Conservation of momentum<span> is a fundamental law of physics. This law states that the </span>momentum<span> of a system is constant if there are </span>no external forces acting on the system. In a situation in which two balls, each with a mass of 0.5 kg, collide on a pool table<span> the law of conservation of momentum is not satisfied because there are external forces that moved the balls. </span>
Options:
A. The luminosity of Star 1 is a factor of 100 less than the luminosity of Star 2.
B. Star 1 is 100 times more distant than Star 2.
C. Without first knowing the distances to these stars, you cannot draw any conclusions about how their true luminosities compare to each other.
D. Star 1 is 10 times more distant than Star 2.
E. Star 1 is 100 times nearer than Star 2.
Answer:
D. Star 1 is 10 times more distant than star 2
Explanation:
For two stars of identical size and temperature, the closer one to us will appear brighter. The relationship between the distance and luminosity of stars is an inverse- square relationship.
Luminosity, L = 1/r²
Where r is the distance of the star to the earth
Since star 1 is dimmer in brightness than star 2 by a factor of 100,
L₁/L₂ = 1/100
i.e. L₁ = 1, L₂=100
L₁ = 1/r₁² ............(1)
1 = 1/r₁²
L₂ = 1/r₂²
100 = 1/r₂² .........(2)
divide equation (2) by equation (1)
100/1 = ( 1/r₂² )/ (1/r₁²)
100 = (r₁/r₂)²
r₁/r₂ = √100
r₁/r₂ = 10
r₁ = 10r₂
It would be "W<span>armer temperatures on earth's surface decrease the evaporation of water."</span>
Answer:
1.23917 m
0.14323 s
Explanation:
v = Speed of sound in dry air at 20 °C = 343.5 m/s
f = Frequency of note C# = 277.2 /s = 277.2 Hz
λ = Wavelength

Wavelength = 1.23917 m
Distance the wave needs to travel is 49.2 m
Time = Distance / Speed

Time taken for the sound to travel across the concert hall is 0.14323 s
Answer:
The current in the rods is 171.26 A.
Explanation:
Given that,
Length of rod = 0.85 m
Mass of rod = 0.073 kg
Distance 
The rods carry the same current in the same direction.
We need to calculate the current
I is the current through each of the wires then the force per unit length on each of them is
Using formula of force


Where, m = mass of rod
l = length of rod
Put the value into the formula




Hence, The current in the rods is 171.26 A.