Answer:
Bank angle = 35.34o
Explanation:
Since the road is frictionless,
Tan (bank angle) = V^2/r*g
Where V = speed of the racing car in m/s, r = radius of the arc in metres and g = acceleration due to gravity in m/s^2
Tan ( bank angle) = 40^2/(230*9.81)
Tan (bank angle) = 0.7091
Bank angle = tan inverse (0.7091)
Bank angle = 35.34o
Answer:
Part a)

Part b)

Explanation:
Part a)
Electric field due to large sheet is given as







now the electric field is given as


Part b)
Now since the electric field is required at same distance on other side
so the field will remain same on other side of the plate

First, let's determine the gravitational force of the Earth exerted on you. Suppose your weight is about 60 kg.
F = Gm₁m₂/d²
where
m₁ = 5.972×10²⁴ kg (mass of earth)
m₂ = 60 kg
d = 6,371,000 m (radius of Earth)
G = 6.67408 × 10⁻¹¹ m³ kg⁻¹ s⁻²
F = ( 6.67408 × 10⁻¹¹ m³ kg⁻¹ s⁻²)(60 kg)(5.972×10²⁴ kg)/(6,371,000 m )²
F = 589.18 N
Next, we find the gravitational force exerted by the Sun by replacing,
m₁ = 1.989 × 10³⁰<span> kg
Distance between centers of sun and earth = 149.6</span>×10⁹ m
Thus,
d = 149.6×10⁹ m - 6,371,000 m = 1.496×10¹¹ m
Thus,
F = ( 6.67408 × 10⁻¹¹ m³ kg⁻¹ s⁻²)(60 kg)(1.989 × 10³⁰ kg)/(1.496×10¹¹ m)²
F = 0.356 N
Ratio = 0.356 N/589.18 N
<em>Ratio = 6.04</em>
<span>Answer:
KE = (11/2)mω²r²,
particle B must have mass of 2m, while A has mass m.
Then the moment of inertia of the system is
I = Σ md² = m*(3r)² + 2m*r² = 11mr²
and then
KE = ½Iω² = ½ * 11mr² * ω² = 11mr²ω² / 2
So I'll proceed under that assumption.
For particle A, translational KEa = ½mv²
but v = ω*d = ω*3r, so KEa = ½m(3ωr)² = (9/2)mω²r²
For particld B, translational KEb = ½(2m)v²
but v = ω*r, so KEb = ½(2m)ω²r²
so total translational KE = (9/2 + 2/2)mω²r² = 11mω²r² / 2
which is equal to our rotational KE.</span>
Answer:
E) True. Ball B will go four times as high as ball A because it had four times the initial kinetic energ
Explanation:
To answer the final statements, let's pose the solution of the exercise
Energy is conserved
Initial
Em₀ = K
Em₀ = ½ m v²
Final
Emf = U = mg h
Em₀ = emf
½ m v² = mgh
h = v² / 2g
For ball A
h_A = v² / 2g
For ball B
h_B = (2v)² / 2g
h_B = 4 (v² / 2g) = 4 h_A
Let's review the claims
A) False. The neck acceleration is zero, it has the value of the acceleration of gravity
B) False. Ball B goes higher
C) False has 4 times the gravitational potential energy than ball A
D) False. It goes 4 times higher
E) True.