Answer:
11482 ppt of Li
Explanation:
The lithium is extracted by precipitation with B(C₆H₄)₄. That means moles of Lithium = Moles B(C₆H₄)₄. Now, 1 mole of B(C₆H₄)₄ produce the liberation of 4 moles of EDTA. The reaction of EDTA with Mg²⁺ is 1:1. Thus, mass of lithium ion is:
<em>Moles Mg²⁺:</em>
0.02964L * (0.05581mol / L) = 0.00165 moles Mg²⁺ = moles EDTA
<em>Moles B(C₆H₄)₄ = Moles Lithium:</em>
0.00165 moles EDTA * (1mol B(C₆H₄)₄ / 4mol EDTA) = 4.1355x10⁻⁴ mol B(C₆H₄)₄ = Moles Lithium
That means mass of lithium is (Molar mass Li=6.941g/mol):
4.1355x10⁻⁴ moles Lithium * (6.941g/mol) = 0.00287g. In μg:
0.00287g * (1000000μg / g) = 2870μg of Li
As ppt is μg of solute / Liter of solution, ppt of the solution is:
2870μg of Li / 0.250L =
<h3>11482 ppt of Li</h3>
Answer:

Explanation:
Hello.
In this case, since the bond energy per C-H bond is 411 kJ/mol and we of course avoid the C-C bond since we are asked to compute the energy to break 7 C-H bonds, the 411 kJ/mol are multiplied by 7 as shown below:

Thus, we obtain the required bond dissociation energy. Note that propane CH₃-CH₂-CH₃ has seven C-H bonds; 3 from the first CH₃, two from the CH₂ and 3 from the last CH₃.
Best regards.
When The rate of effusion is inversely proportional to the √molar mass of the substance.
and we have R(He) = 1L / 4.5 min so,
R(He)/R(Cl2) = (molar mass of Cl2/ molar mass of He)^0.5
and when we have the molar mass of Cl2 = 70.9 & the molar mass of He = 4
so by substitution:
(1L/4.5 min)/ R(Cl2) = (70.9 / 4)^0.5
(1L/4.5 min) / R(Cl2) = 4.21
∴R(Cl2) = (1L/4.5 min) / 4.21 = 1L/ (4.5*4.21)min = 1 L / 18.945 min
∴Cl2 will take 18.945 min for 1 L to effuse under identical conditions
<span>(CH3)2-CH2-C(F)(OH)-CH2-CBr2-CH3</span>
Molecule is the smallest particle of a compound or an element with similar properties as the element or the compound. Covalent bond (dative bond) is a bond that is formed due to the sharing of electrons between atoms. Coordinate covalent bond is a type of covalent where electrons shared during bond formation comes from one atom. In this case a molecule of H2O would form a coordinate bond with H+ because the oxygen contains a lone pair of electrons forming H3O+.