One mole any substance contains 6.022 ₓ 10²³ particles called Avogadro's Number.
The relation between moles and number of particles is given as,
# of particles = moles ₓ Avogadro's number
In our case the particles are formula units of MgCO₃. So, 1 mole of MgCO₃ contain 6.022 ₓ 10²³ formula units, then the number of formula units in 1.72 moles are calculated as,
# of formula units = 1.72 mol ₓ 6.022 ₓ 10²³ formula units / mol
# of formula units = 1.035 ₓ 10²⁴ Formula Units
Answer:
Water
Explanation:
Water is universal solvent it can disolves other things
Answer:
1.053×10²⁴ atoms of gold
Explanation:
Hello,
Gold nugget are usually the natural occurring gold and they contain 85% - 90% weight of pure gold.
In this question, we're required to find the number of atoms in 344.75g of a gold nugget.
We can use mole concept relationship between Avogadro's number and molar mass.
1 mole = molar mass
Molar mass of gold = 197 g/mol
1 mole = Avogadro's number = 6.022 × 10²³ atoms
Number of mole = mass / molar mass
Mass = number of mole × molar mass
Mass = 1 × 197
Mass = 197g
197g is present in 6.022×10²³ atoms
344.75g will contain x atoms
x = (344.75 × 6.022×10²³) / 197
X = 1.053×10²⁴ atoms
Therefore 344.75g of gold nugget will contain 1.053×10²⁴ atoms of gold
Answer: 
Explanation:
Significant figures : The figures in a number which express the value or the magnitude of a quantity to a specific degree of accuracy is known as significant digits.
Rules for significant figures:
Digits from 1 to 9 are always significant and have infinite number of significant figures.
All non-zero numbers are always significant.
All zero’s between integers are always significant.
All zero’s after the decimal point are always significant.
All zero’s preceding the first integers are never significant.
Thus
has three significant figures
it´s actually Lithium and fluorine / Magnesium and Chlorine / Beryllium and Nitrogen