Answer: C. 25.6 kPa
Explanation:
The Gauge pressure is defined as the amount of pressure in a fluid that exceeds the amount of pressure in the atmosphere.
As such, the formula will be,
PG = PT – PA
Where,
PG is Gauge Pressure
PT is Absolute Pressure
PA is Atmospheric Pressure
Inputted in the formula,
PG = 125.4 - 99.8
PG = 25.6 kPa
The gauge pressure inside the container is 25.6kPa which is option C.
Answer : The results would show more amount of water in the hydrated sample.
Explanation :
The amount of water of crystallization can be found by taking the masses of hydrated copper sulfate and anhydrous copper sulfate.
The difference in masses indicates the mass of water lost during dehydration process.
If during dehydration process, some of the copper sulfate spatters out of the crucible, then this would give us less mass for anhydrous sample than the actual.
As a result, the difference in masses of hydrated sample and the anhydrous sample would be more.
Therefore the results would show more amount of water in the hydrated sample.
Answer:
Energy transfers from the metal to the water and calorimeter until they are all at room temperature.
Explanation:
CHECK THE COMPLETE QUESTION BELOW;
A metal sample is heated and placed into the water in a calorimeter at room temperature. Which statement best describes how the calorimeter can be used to determine the specific heat capacity of the metal sample?
Energy transfers to the metal from the water and calorimeter until they are all at room temperature
. Energy transfers from the metal to the water and calorimeter until they are all at room temperature.
Energy transfers to the metal from the water and calorimeter until they all reach a single temperature.
Energy transfers from the metal to the water and calorimeter until they all reach a single temperature.
EXPLANATION;
Using calorimeter to determine the specific heat capacity of the metal sample can be associated to the theory of conservation of energy because heat which is a form of energy is been transfer of heat between the metal to the water and the calorimeter, this process will proceed till single temperature is attained.
The change in the amount of temperature of the water in the calorimeter is measured in order to get the difference in heat change of the calorimeter water.
CHANGE IN HEAT CAN BE CALCULATED USING THE FORMULA.
Q = cmΔT where Q is the change in heat , c is the specific heat capacity and ΔT is the change in temperature
The balanced chemical equation that represents the reaction is as follows:
<span>SrBr2(aq) + 2AgNO3(aq) → Sr(NO3)2(aq) + 2AgBr(s)
</span>
From the periodic table:
mass of silver = 108 grams
mass of bromine = 80 grams
molar mass of silver bromide = 108 + 80 = 188 grams
number of moles = mass / molar mass
number of moles of produced precipitate = 3.491/188 = 0.018 moles
From the balanced equation:
1 mole of strontium bromide produces 2 moles of silver bromide. Therefore, to calculate the number of moles of <span>strontium bromide that produces 0.018 moles of silver bromide, you will just do a cross multiplication as follows:
amount of </span><span>strontium bromide = (0.018x1) / 2 = 9.28 x 10^-3 moles</span>
Answer: The actual yield of
is 60.0 g
Explanation:-
The balanced chemical reaction :

Mass of
=

According to stoichiometry:
1 mole of
gives = 1 mole of 
1.51 moles of
gives =
moles of 
Theoretical yield of 
Percent yield of
= 



Thus the actual yield of
is 60.0 g