Answer: In the beginning he was given 27 sweets.
Step-by-step explanation: The most logical thing to do is to solve it backwards, that is, from what he had at the end of the third day up till the beginning of the first day.
On the third day he ate one-third and had 8 sweets left over. To determine how many he started with on the third day, let the total on day three be called a. If one-third of a is eaten, then the left over which is two-thirds is 8. That is;
8/a = 2/3
By cross multiplication we now have
8 x 3 = 2a
24/2 = a
a = 12
Let the number of sweets he had on day two be called b. If he ate one-third of b and he had 12 left over, then the two-thirds left over is 12 and we now have;
12/b = 2/3
By cross multiplication we now have
12 x 3 = 2b
36 = 2b
36/2 = b
b = 18
Let the number of sweets he had on day one be called x. If he ate one-third of x and he had 18 left over, then the two-thirds left over is 18, and we now have;
18/x = 2/3
By cross multiplication we now have
18 x 3 = 2x
54 = 2x
x = 27
Therefore Tim was given 27 sweets at the beginning.
12 seniors of 25 total seniors voted for candid pictures, so it would be
12/25, or 48%
20 pounds of lollipops. 20 x .95 = 19, 10 x 1.1 = 11. sorry i'm awful at explaining math.
Answer:
C. Different sample proportions would result each time, but for either sample size, they would be centered (have their mean) at the true population proportion.
Step-by-step explanation:
From the given information;
A political polling agency wants to take a random sample of registered voters and ask whether or not they will vote for a certain candidate.
A random sample is usually an outcome of any experiment that cannot be predicted before the result.
SO;
One plan is to select 400 voters, another plan is to select 1,600 voters
If the study were conducted repeatedly (selecting different samples of people each time);
Different sample proportions would result each time, but for either sample size, they would be centered (have their mean) at the true population proportion. This is because a sample proportion deals with random experiments that cannot be predicted in advance and they are quite known to be centered about the population proportion.