The second question:
Consider the division expression
. Select all multiplication equations that correspond to this division expression.


Answer:
1. See Explanation
2.
and 
Step-by-step explanation:
Solving (a):
Given


Required
Interpret
in 2 ways
<u>Interpretation 1:</u> Number of groups if there are 5 students in each
<u>Interpretation 2:</u> Number of students in each group if there are 5 groups
<u>Solving the quotient</u>


<u>For Interpretation 1:</u>
The quotient means: 12 groups
<u>For Interpretation 2:</u>
The quotient means: 12 students
Solving (b):
Given

Required
Select all equivalent multiplication equations
Let ? be the quotient of t 
So, we have:

Multiply through by 2


Rewrite as:
--- This is 1 equivalent expression
Apply commutative law of addition:
--- This is another equivalent expression
Answer:
15 dollers or 22.5%
Step-by-step explanation:
thank you i hope this helps
Given:
4log1/2^w (2log1/2^u-3log1/2^v)
Req'd:
Single logarithm = ?
Sol'n:
First remove the parenthesis,
4 log 1/2 (w) + 2 log 1/2 (u) - 3 log 1/2 (v)
Simplify each term,
Simplify the 4 log 1/2 (w) by moving the constant 4 inside the logarithm;
Simplify the 2 log 1/2 (u) by moving the constant 2 inside the logarithm;
Simplify the -3 log 1/2 (v) by moving the constant -3 inside the logarithm:
log 1/2 (w^4) + 2 log 1/2 (u) - 3 log 1/2 (v)
log 1/2 (w^4) + log 1/2 (u^2) - log 1/2 (v^3)
We have to use the product property of logarithms which is log of b (x) + log of b (y) = log of b (xy):
Thus,
Log of 1/2 (w^4 u^2) - log of 1/2 (v^3)
then use the quotient property of logarithms which is log of b (x) - log of b (y) = log of b (x/y)
Therefore,
log of 1/2 (w^4 u^2 / v^3)
and for the final step and answer, reorder or rearrange w^4 and u^2:
log of 1/2 (u^2 w^4 / v^3)