Answer:
Step-by-step explanation:
We would set up the hypothesis test. This is a test of a single population mean since we are dealing with mean
For the null hypothesis,
H0: µ = 5000
For the alternative hypothesis,
H1: µ > 5000
Since the population standard deviation is given, z score would be determined from the normal distribution table. The formula is
z = (x - µ)/(σ/√n)
Where
x = sample mean
µ = population mean
σ = population standard deviation
n = number of samples
From the information given,
µ = 5000
x = 5430
σ = 600
n = 40
z = (5430 - 5000)/(600/√40) = 4.53
Looking at the normal distribution table, the probability corresponding to the z score is < 0.0001
Since alpha, 0.05 > than the p value, then we would reject the null hypothesis. Therefore, at a 5% level of significance, it can be concluded that they walked more than the mean number of 5000 steps per day.
Answer:
The correct answer is C.
Step-by-step explanation:
I took the test

now, if you notice, the positive fraction, is the one with the "y" variable, and that simply means, the hyperbola traverse axis is over the y-axis, so it more or less looks like the picture below.
now, from the hyperbola form, we can see the center is at (7, -11), and that the "c" distance is 17.
so, from -11 over the y-axis, we move Up and Down 17 units to get the foci, which will put them at (7, -11-17) or
(7, -28) and (7 , -11+17) or
(7, 6)
In your problem:
p = 18.3% = 0.183
n = 130
The standard error can be calculated by the formula:
SE = √[p · (1 - p) / n]
= √[0.183 · (1 - 0.183) / 130]
= 0.0339
The standard error of the proportion is 0.034.