Answer:
293.7 degrees
Explanation:
A = - 8 sin (37) i + 8 cos (37) j
A + B = -12 j
B = a i+ b j , where and a and b are constants to be found
A + B = (a - 8 sin (37) ) i + ( 8cos(37) + b ) j
- 12 j = (a - 8 sin (37) ) i + ( 8cos(37) + b ) j
Comparing coefficients of i and j:
a = 8 sin (37) = 4.81452 m
b = -12 - 8cos(37) = -18.38908
Hence,
B = 4.81452 i - 18.38908 j ..... 4 th quadrant
Hence,
cos ( Q ) = 4.81452 / 12
Q = 66.346 degrees
360 - Q = 293.65 degrees from + x-axis in CCW direction
The average speed can be easily calculated by taking the
ratio of distance and time. That is:
average speed = distance / time
so calculating:
average speed = 4875 ft / 6.85 minutes
<span>average speed = 711.68 ft / min</span>
Answer:
Obviously Lengthen...
or 
Explanation:
As we can observe from the equation, time period of a simple pendulum depends upon the length directly. When the gravitational acceleration increases the time period of the pendulum decreases and vice versa. So, by increasing the length, the time period can be adjusted...
Answer:
v = 1/3 m / s = 0.333 m / s
in the direction of the truck
Explanation:
The average speed is defined by the variation of the position between the time spent
v = Δx / Δt
since the position is a vector we must add using vectors, we will assume that the displacement to the right is positive, the total displacement is
Δx = 20 - 15 +20
Δx = 25 m
therefore we calculate
v = 25/75
v = 1/3 m / s = 0.333 m / s
in the direction of the truck
Answer:
the correct answer is A, the object goes 4 times as far
Explanation:
This is a projectile launching approach. Where the parameter we are controlling is the initial speed and they ask us how far it goes from the initial one. Let's calculate the range with a speed (vo)
R1 = v₀² sin 2θ / g
Now let's double vo, the new speed is
v = 2 v₀
We calculate the scope
R2 = (2v₀)² sin 2θ / g
R2 = 4 v₀² sin 2θ / g
R2 = 4 R1
Therefore the correct answer is A, the object goes 4 times further