Answer:
- The total amount accrued, principal plus interest, from compound interest on an original principal of $ 300.00 at a rate of 6% per year compounded 2 times per year over 0.5 years is $ 309.00.
- The total amount accrued, principal plus interest, from compound interest on an original principal of $ 300.00 at a rate of 6% per year compounded 2 times per year over 1 year is $ 318.27.
Step-by-step explanation:
a) How much will you have at the middle of the first year?
Using the formula

where
Given:
Principle P = $300
Annual rate r = 6% = 0.06 per year
Compound n = Semi-Annually = 2
Time (t in years) = 0.5 years
To determine:
Total amount = A = ?
Using the formula

substituting the values



$
Therefore, the total amount accrued, principal plus interest, from compound interest on an original principal of $ 300.00 at a rate of 6% per year compounded 2 times per year over 0.5 years is $ 309.00.
Part b) How much at the end of one year?
Using the formula

where
Given:
Principle P = $300
Annual rate r = 6% = 0.06 per year
Compound n = Semi-Annually = 2
Time (t in years) = 1 years
To determine:
Total amount = A = ?
so using the formula

so substituting the values


$
Therefore, the total amount accrued, principal plus interest, from compound interest on an original principal of $ 300.00 at a rate of 6% per year compounded 2 times per year over 1 year is $ 318.27.
Answer:
i) There are 40320 possible orders
ii) There are 336 possible orders for the first 3 positions.
Step-by-step explanation:
Given: The number of finalists = 8
The number of boys = 3
The number of girls = 5
To find the number of sample point the sample space S for the number of possible orders, we need to find factorial of 8!
The number of possible orders = 8!
= 1 x 2 x 3 x 4 x 5 x 6 x 7 x 8
= 40320
ii) From all 8 finalist, we need to choose first 3 position. Here the order is important. So we use permutation.
nPr =
Here n = 8 and r = 3
Plug in n =8 and r = 3 in the above formula, we get
8P3 = 
= 
= 6.7.8
= 336
So there are 336 possible orders for the first 3 positions.
Answer:
The parenthesis need to be kept intact while applying the DeMorgan's theorem on the original equation to find the compliment because otherwise it will introduce an error in the answer.
Step-by-step explanation:
According to DeMorgan's Theorem:
(W.X + Y.Z)'
(W.X)' . (Y.Z)'
(W'+X') . (Y' + Z')
Note that it is important to keep the parenthesis intact while applying the DeMorgan's theorem.
For the original function:
(W . X + Y . Z)'
= (1 . 1 + 1 . 0)
= (1 + 0) = 1
For the compliment:
(W' + X') . (Y' + Z')
=(1' + 1') . (1' + 0')
=(0 + 0) . (0 + 1)
=0 . 1 = 0
Both functions are not 1 for the same input if we solve while keeping the parenthesis intact because that allows us to solve the operation inside the parenthesis first and then move on to the operator outside it.
Without the parenthesis the compliment equation looks like this:
W' + X' . Y' + Z'
1' + 1' . 1' + 0'
0 + 0 . 0 + 1
Here, the 'AND' operation will be considered first before the 'OR', resulting in 1 as the final answer.
Therefore, it is important to keep the parenthesis intact while applying DeMorgan's Theorem on the original equation or else it would produce an erroneous result.