answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
astraxan [27]
2 years ago
4

A dancer lifts his partner above his head with an acceleration of 2.5 m/s2. The dancer exerts a force of 200 N. What is the mass

of the partner?
Physics
1 answer:
eimsori [14]2 years ago
8 0
Super helpful formula in physics:
Force = acceleration * mass
F = am
Remember your F=am!

mass = Force/acceleration
mass = 200 N / (2.5 meters/seconds^2)
mass = 80 kilograms (about the mass of an average person)
You might be interested in
Complete combustion of 1.0 metric ton of coal (assuming pure carbon) to gaseous carbon dioxide releases 3.3 x 1010 j of heat. co
netineya [11]
Keeping in mind that the conversion between calories and Joules is
1 cal = 4.186 J
we can write the conversion factor using the kilocalories:
1 kcal = 4186 J

The energy released in our problem is
E=3.3 \cdot 10^{10} J 
so we can set a simple proportion to find its equivalent in kcal:
1 kcal: 4186 J = x: 3.3 \cdot 10^{10} J
from which we find:
x= \frac{3.3 \cdot 10^{10} J \cdot 1 kcal}{4186 J} =7.88 \cdot 10^6 kcal
6 0
2 years ago
A car drives off a cliff next to a river at a speed of 30 m/s and lands on the bank on theother side. The road above the cliff i
dezoksy [38]

Answer:1.301 s

Explanation:

Given

Initial Velocity(u)=30 m/s

Height of cliff=8.3 m

Time taken to cover 8.3 m

h=ut+\frac{at^2}{2}

here Initial vertical velocity is 0

8.3=\frac{gt^2}{2}

t^2=1.69

t=1.301 s

Horizontal distance

R=u\times t

R=30\times 1.301=39.04 m

7 0
2 years ago
In the Atwood machine shown below, m1 = 2.00 kg and m2 = 6.05 kg. The masses of the pulley and string are negligible by comparis
Rus_ich [418]
M1 descending
−m1g + T = m1a 

m2 ascending
m2g − T = m2a

this gives :
(m2 − m1)g = (m1 + m2)a 

a = (m2 − m1)g/m1 + m2
   = (5.60 − 2)/(2 + 5.60) x 9.81 
   = = 4.65m/s^2
5 0
2 years ago
A rock with density 1900 kg/m3 is suspended from the lower end of a light string. When the rock is in air, the tension in the st
wel

Answer:

the tension T2 when the rock is completely immersed is T2 =  29.05 N

Explanation:

from Newton's second law

F= m*a

where F= force , m= mass , a= acceleration

when the rock is suspended ,a=0 since it is at rest. Then

T1 - m*g = 0 , T1= tension when suspended in air , g= gravity

assuming constant density of the rock

m= ρ rock *V , where  ρ rock = density of the rock , V= volume

thus

T1= m*g = ρ rock *g*V

V=  T1/(ρ rock *g)

when the rock is submerged in oil , it receives an upward force that equals the weight of the volume of displaced oil (V displaced). Since it is completely submerged the volume displaced is the volume of the rock V=Vdisplaced  

When the rock is at rest , then

F= m*a=0

T2 + ρ oil *g*V displaced - ρ rock *g*V  =0

T2 = ρ rock *g*V - ρ oil *g*V = g*V (ρ rock - ρ oil)

T2 = g*V (ρ rock - ρ oil) = T1/(ρ rock *g) *g * (ρ rock - ρ oil)

T2 = T1 * (ρ rock - ρ oil)/ρ rock

replacing values

T2 = 48 N * (1900 kg/m3- 750 kg/m3)/ 1900 kg/m3 = 29.05 N

T2 =  29.05 N

3 0
2 years ago
Does a fish appear closer or farther from a person wearing swim goggles with an air pocket in front of their eyes than the fish
Sunny_sXe [5.5K]

Answer:

In this case, the index of seawater replacement is 1.33, the index of refraction of air is 1, which is why the angle of replacement is less than the incident angle, so the fish seems to be closer

In the opposite case, when the fish looked at the face of the man, the angle of greater reason why it seems to be further away

Explanation:

This exercise can be analyzed with the law of refraction that establishes that a ray of light when passing from one medium to another with a different index makes it deviate from its path,

      n₁ sin θ₁ = n₂ sin θ₂

where n₁ and n₂ are the refractive indices of the incident and refracted means and the angles are also for these two means.

In this case, the index of seawater replacement is 1.33, the index of refraction of air is 1, which is why the angle of replacement is less than the incident angle, so the fish seems to be closer

1 sin θ₁ = 1.33 sin θ₂

        θ₂ = sin⁻¹ ( 1/1.33 sin θ₁)

In the opposite case, when the fish looked at the face of the man, the angle of greater reason why it seems to be further away

4 0
2 years ago
Other questions:
  • a very thin layer of gold plating was placed on a metal tray that measures 25.22 cm by 13.22cm. The gold plating increased the m
    8·1 answer
  • A trooper is moving due south along the freeway at a speed of 23 m/s. at time t = 0, a red car passes the trooper. the red car m
    12·2 answers
  • One object has twice as much mass as another object. The first object also has twice as much a velocity. b gravitational acceler
    14·1 answer
  • Suppose that 8 turns of a wire are wrapped around a pipe with a length of 60 inches and a circumference of 4​ inches, so that th
    7·2 answers
  • Garret's swimming coach is giving him important and helpful tips to improve his swimming skills. Which gesture suggests that Gar
    11·2 answers
  • James Joule (after whom the unit of energy is named) claimed that the water at the bottom of Niagara Falls should be warmer than
    8·1 answer
  • A bar extends perpendicularly from a vertical wall. The length of the bar is 2 m, and its mass is 10 kg. The free end of the rod
    5·1 answer
  • A series circuit contains an 80-μF capacitor, a 0.020-H inductor, and a switch. The resistance of the circuit is negligible. Ini
    14·1 answer
  • A 30-m-long rocket train car is traveling from Los Angeles to New York at 0.5c when a light at the center of the car flashes. Wh
    6·1 answer
  • A large semi-truck, with mass 31x crashes into a small sedan with mass x . If the semi-truck exerts a force F on the sedan, what
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!