Answer:
the price of adult ticket and student ticket be $10.50 and $8.25 respectively
Step-by-step explanation:
Let us assume the price of adult ticket be x
And, the price of student ticket be y
Now according to the question
2x + 2y = $37.50
x + 3y = $35.25
x = $35.25 - 3y
Put the value of x in the first equation
2($35.25 - 3y) + 2y = $37.50
$70.50 - 6y + 2y = $37.50
-4y = $37.50 - $70.50
-4y = -$33
y = $8.25
Now x = $35.25 - 3($8.25)
= $10.5
Hence, the price of adult ticket and student ticket be $10.50 and $8.25 respectively
Answer:
0 dollars
=E(M)
=μ
M
=−$10,000(0.81)+$40,000(0.18)+$90,000(0.01)
=−8,100+7,200+900
=0
Answer:
total20000
bonus15000
remaining 20000-15000=5000
ratio 2+3=5x
Dan part =3x
Dan value=( 5000/5)*3=3000
Step-by-step explanation:
Answer:
15 degrees
Step-by-step explanation:
Draw a horizontal segment approximately 4 inches long. Label the right endpoint A and the left endpoint C. Label the length of AC 4.2 meters. That is the horizontal distance between the eye and the blackboard.
At the right endpoint, A, draw a vertical segment going up, approximately 1 inch tall. Label the upper point E, for eye. Label segment EA 1 meter since the eye is 1 meter above ground.
At the left endpoint of the horizontal segment, point C, draw a vertical segment going up approximately 2 inches. Label the upper point B for blackboard. Connect points E and B. Draw one more segment. From point E, draw a horizontal segment to the left until it intersects the vertical segment BC. Label the point of intersection D.
The angle of elevation you want is angle BED.
The length of segment BC is 2.1 meters. The length of segment CD is 1 meter. That means that the length of segment BD is 1.1 meters.
To find the measure of angle BED, we can use the opposite leg and the adjacent leg and the inverse tangent function.
BD = 1.1 m
DE = 4.2 m
tan <BED = opp/adj
tan <BED = 1.1/4.2
m<BED = tan^-1 (1.1/4.2)
m<BED = 15
Answer: 15 degrees
Answer:
13
Step-by-step explanation:
The GCF of 36, 48, and 72 is 12 so there will be 36 / 12 = 3 stacks of English books, 48 / 12 = 4 stacks of science books and 72 / 12 = 6 stacks of math books for a total of 3 + 4 + 6 = 13 stacks.