Answer:
The answer to be filled in the respective blanks in question is
3 and 1
Explanation:
So, we know that the formation of cabon-dioxide mole and that of Adenosin-Tri-Phosphate (ATP) moles will be in the ratio of 3:1 i.e., three carbon-di-oxide moles and 1 ATP mole.
Therefore, we can say that one pyruvate mole when passed through citric acid cycle and pyruvate dehydrogenase yields carbon-di-oxide and ATP moles in the ratio 3:1
Answer:
The average kinetic energy of the gas particles is greater in container B because it has a higher temperature.
Explanation:
<em>The correct option would be that the average kinetic energy of the gas particles is greater in container B because it has a higher temperature.</em>
<u>According to the kinetic theory of matter, the temperate of a substance is a measure of the average kinetic energy of the molecules of substance. In other words, the higher the temperature of a substance, the higher the average kinetic energy of the molecules of the substance.</u>
In the illustration, the gas in container B showed a higher temperature than that of container A as indicated on the thermometer, it thus means that the average kinetic energy of the molecules of gas B is higher than those of gas A.
Answer:
less concentrated
Explanation:
because it will get dissociated into more ions
Answer:
The disadvantages of each of the given model of electron configuration have been mentioned below:
1). Dot Structures - They take up excess space as they do not display the electron distribution in orbitals.
2). Arrow and line diagrams make the counting of electrons and take up too much space.
3). Written Configurations do not display the electron distribution in orbitals and help in lose counting of electrons easily.
Answer:
B. This explains how two noble gases' molecules can have an attractive force between them.
C. This explains why long hydrocarbon chains have relatively high boiling points.
Explanation:
Temporary dipole moments are weak intermolecular force of attraction between two or more compounds. They are the weakest of intermolecular forces. They form when non-polar molecules becomes polar due to the constant motion of their electrons. This may lead to an uneven charge distribution at an instant.
When this occurs, the molecule has a temporary dipole. The dipole can induce neighboring molecules to be distorted and form dipoles as well.
- Two noble gases can exhibit this bonding attraction usually when at low temperature. The temporary dipole cause a temporary charge separation and can lead to attraction.
- Long hydrocarbons of long chains also exhibits this bonding which can cause a rise in their boiling point.
- Ammonia and nitrogen gas will exhibit hydrogen bonding, a strong dipole - dipole attraction.
- Hydrogen fluoride and methanol has hydrogen bonds likewise dimethyl either and acetone.