Differences between two samples are least likely to be statistically significant if<span>the samples are small and the standard deviations of the samples are large</span>
Answer/Step-by-step explanation (ac > b² or b² < ac.
)
A/c to question, we have to show:-
b² >ac in A.P ........ (1)
b² = ac in G.P .....(2)
b² < ac in H.P. ..... (3)
b = a+c/2 (A.P)
b = √ac ( G.P)
b = 2ac/a+c (H.P)
In A.P :
b² > ac = b² - ac
= (a+c/2)² - ac
= (a²+2ac+c²/4) - ac = a² + 2ac + c² - 4ac / 4
= a² - 2ac + c² / 4 = ( a - c ) ² / 4 > 0 Hence, b²>ac
In G.P:-
b = √ac
Hence, b² = ac
In H.P :- b² < ac = ac > b² = ac - b² = ac - ( 2ac / a+c)
= ac(a+c) - 2ac / a+c
= a²c + ac² - 2ac / a+c
= ac(2ac - 2) / a+c > 0
Hence, ac > b² or b² < ac.
<span>These angles coincide with either positive or negative x and y axis. Angles 0 , 90 , 180 , 270 ... So an integer\[\Theta + n \frac{ \pi }{ 2 } , n \in I\] multiplied with pi/2 is the expression. </span>
Two figures are similar if one is the scaled version of the other.
This is always the case for circles, because their geometry is fixed, and you can't modify it in anyway, otherwise it wouldn't be a circle anymore.
To be more precise, you only need two steps to prove that every two circles are similar:
- Translate one of the two circles so that they have the same center
- Scale the inner circle (for example) unit it has the same radius of the outer one. You can obviously shrink the outer one as well
Now the two circles have the same center and the same radius, and thus they are the same. We just proved that any two circles can be reduced to be the same circle using only translations and scaling, which generate similar shapes.
Recapping, we have:
- Start with circle X and radius r
- Translate it so that it has the same center as circle Y. This new circle, say X', is similar to the first one, because you only translated it.
- Scale the radius of circle X' until it becomes
. This new circle, say X'', is similar to X' because you only scaled it
So, we passed from X to X' to X'', and they are all similar to each other, and in the end we have X''=Y, which ends the proof.
The correct answer is C. A 2-column table with 3 rows. Column 1 is labeled x with entries negative 5, 0, 3. Column 2 is labeled y with entries negative 18, negative 2, 10.
Explanation:
The purpose of an equation is to show the equivalence between two mathematical expressions. This implies in the equation "–2 + 4x = y" the value of y should always be the same that -2 + 4x. Additionally, if a table is created with different values of x and y the equivalence should always be true. This occurs only in the third option.
x y
5 -18
0 -2
3 10
First row:
-2 + 4 (5) = y (5 is the value of x which is first multyply by 4)
-2 + 20 = -18 (value of y in the table)
Second row:
-2 + 4 (0) y
-2 + 0 = -2
Third row:
-2 + 4 (3) = y
-2 + 12 = 10