<u>Complete Question</u>
The circle is inscribed in triangle PRT. A circle is inscribed in triangle P R T. Points Q, S, and U of the circle are on the sides of the triangle. Point Q is on side P R, point S is on side R T, and point U is on side P T. The length of R S is 5, the length of P U is 8, and the length of U T is 6. Which statements about the figure are true?
Answer:
(B)TU ≅ TS
(D)The length of line segment PR is 13 units.
Step-by-step explanation:
The diagram of the question is drawn for more understanding,
The theorem applied to this problem is that of tangents. All tangents drawn to a circle from the same point are equal.
Therefore:
|PQ|=|PU|=8 Units
|ST|=|UT| =6 Units
|RS|=|RQ|=5 Units
(b)From the above, TU ≅ TS
(d)Line Segment |PR|=|PQ|+|QR|=8+5=`13 Units
4(2 - x) > -2x - 3(4x + 1)
8 - 4x > -2x - 12x - 3
-4x + 2x + 12x > -3 - 8
10x > -11
x > -11/10
x > -1.1
Therefore, x = 0 and x = 10 zre solutions to the inequality.
Answer:
Step-by-step explanation:
The answer is A, C, D, and E. I just took the test.
The answer is 1 because you are the only one in the garden. The rest of the people are in the yard.
Answer:
c
Step-by-step explanation: