Event: Probability: A. Too much enamel 0.18 B. Too little enamel 0.24 C. Uneven application 0.33 D. No defects noted 0.47
let P(AC) = x, P(BC) = y, then P(A) + P(B) + P(C) - (x+y) = 1-0.47 = 0.53 x+y = 0.22
3. The probability of paint defects that results to <span>an improper amount of paint and uneven application? </span>
P(A U B U C) = 0.53
4. <span>the probability of a paint defect that results to</span>
<span>the proper amount of paint, but uneven application?</span>
P(C) - P(AC) - P(BC) = 0.47 - 0.22 = 0.25
A and B are disjoint so P(ABC) = 0, but you can have P(AC) and P(BC). you can't compute these separately here, but you can compute P(AC) + P(BC). By the way, P(AC) eg is just an abbreviated version of P(A∩C).
Answer:
(3x - 4)(8x - 3)
Step-by-step explanation:
Consider the factors of the product of the coefficient of the x² term and the constant term which sum to give the coefficient of the x- term.
product = 24 × 12 and sum = - 41
The required factors are - 32 and - 9
Use these factors to split the x- term
24x² - 32x - 9x + 12 ( factor the first/second and third/fourth terms )
= 8x(3x - 4) - 3(3x - 4) ← factor out (3x - 4) from each term
= (3x - 4)(8x - 3) ← in factored form
Answer:
Answers are below
Step-by-step explanation:
4t x 5t = 20t²
4t x -4 = -16t
5 x 5t = 25t
5 x -4 = -20
The top left box should be 20t²
The top right box should be -16t
The bottom left box should be 25t
The bottom right box should be -20
Your question is store uses the expression –2p + 50 to model the number of backpacks it sells per day, where the price, p, can be anywhere from $9 to $15. Which price gives the store the maximum amount of revenue, and what is the maximum revenue?
The answer is C. $12.50 per backpack gives the maximum revenue; the maximum revenue is $312.50.
Answer:
Did you get the answer
Step-by-step explanation: