Answer:
(A)
Step-by-step explanation:
Point A is at (-2,4)
Rule of a 180° rotation about the origin: (x,y) --> (-x,-y)
Using the rule, (-2,4) will become (2,-4).
A' should be (2,-4) or Option A.
Answer:
We need a non-included side of one triangle
Step-by-step explanation:
By means of the AAS postulate.
The Angle-Angle-Side postulate (AAS) tells us that if two angles and a non-included side of one triangle are congruent to two angles and the corresponding non-included side of another triangle, then the two triangles are congruent.
Answer:
Yes, it would be statistically significant
Step-by-step explanation:
The information given are;
The percentage of jawbreakers it produces that weigh more than 0.4 ounces = 60%
Number of jawbreakers in the sample, n = 800
The mean proportion of jawbreakers that weigh more than 0.4 = 60% = 0.6 =
=p
The formula for the standard deviation of a proportion is 
Solving for the standard deviation gives;

Given that the mean proportion is 0.6, the expected value of jawbreakers that weigh more than 0.4 in the sample of 800 = 800*0.6 = 480
For statistical significance the difference from the mean = 2×
= 2*0.0173 = 0.0346 the equivalent number of Jaw breakers = 800*0.0346 = 27.7
The z-score of 494 jawbreakers is given as follows;


Therefore, the z-score more than 2 ×
which is significant.

Explanation:
Since we have given that
The prices of three t-shirts styles i.e $24, $30, $36 with their probability is given by

As we know that,


Now,

and

So,

So, the expected value of a t-shirt = $31.
Answer:
The probability of a selection of 50 pages will contain no errors is 0.368
The probability that the selection of the random pages will contain at least two errors is 0.2644
Step-by-step explanation:
From the information given:
Let q represent the no of typographical errors.
Suppose that there are exactly 10 such errors randomly located on a textbook of 500 pages. Let
be the random variable that follows a Poisson distribution, then mean 
and the mean that the random selection of 50 pages will contain no error is 
∴

Pr(q =0) = 0.368
The probability of a selection of 50 pages will contain no errors is 0.368
The probability that 50 randomly page contains at least 2 errors is computed as follows:
P(X ≥ 2) = 1 - P( X < 2)
P(X ≥ 2) = 1 - [ P(X = 0) + P (X =1 )] since it is less than 2
![P(X \geq 2) = 1 - [ \dfrac{e^{-1} 1^0}{0!} +\dfrac{e^{-1} 1^1}{1!} ]](https://tex.z-dn.net/?f=P%28X%20%5Cgeq%202%29%20%3D%201%20-%20%5B%20%5Cdfrac%7Be%5E%7B-1%7D%201%5E0%7D%7B0%21%7D%20%2B%5Cdfrac%7Be%5E%7B-1%7D%201%5E1%7D%7B1%21%7D%20%5D)
![P(X \geq 2) = 1 - [0.3678 +0.3678]](https://tex.z-dn.net/?f=P%28X%20%5Cgeq%202%29%20%3D%201%20-%20%5B0.3678%20%2B0.3678%5D)

P(X ≥ 2) = 0.2644
The probability that the selection of the random pages will contain at least two errors is 0.2644