<span>The molar mass of the compound is 122 g. </span>
Answer:
P = 20.1697 atm
Explanation:
In this case we need to use the ideal gas equation which is:
PV = nRT (1)
Where:
P: Pressure (atm)
V: Volume (L)
n: moles
R: universal gas constant (=0.082 L atm / K mol)
T: Temperature
From here, we can solve for pressure:
P = nRT/V (2)
According to the given data, we have the temperature (T = 20 °C, transformed in Kelvin is 293 K), the moles (n = 125 moles), and we just need the volume. But the volume can be calculated using the data of the cylinder dimensions.
The volume for any cylinder would be:
V = πr²h (3)
Replacing the data here, we can solve for the volume:
V = π * (17)² * 164
V = 148,898.93 cm³
This volume converted in Liters would be:
V = 148,898.93 mL * 1 L / 1000 mL
V = 148.899 L
Now we can solve for pressure:
P = 125 * 0.082 * 293 / 148.899
<h2>
P = 20.1697 atm</h2>
Answer:
Explanation:
So basically it just asking you question about that surtain subject .
Answer:
About 0.08486 moles
Explanation:
PV=nRT, when P is the pressure in atmospheres, V is the volume in liters, n is the number of moles, R is the universal gas constant, and T is the temperature in Kelvin.

moles
Hope this helps!
Entropy Change is calculated by (Energy transferred) / (Temperature in kelvin)
deltaS = Q / T
Q = (mass)(latent heat of fusion)
Q = m(hfusion)
Q = (500g)(333J/g) = 166,500J
T(K) = 32 + 273.15 = 305.15K
deltaS = 166,500J / 305.15K
deltaS = 545.63 J/K