Distance = Speed * Time
D = 25.6 * 4
D = 102.4 miles
In short, Your Final Answer would be: 102.4 miles
Hope this helps!
Around 22-23 create a function and input these to find the exact
Answer:
0.006% probability that the final vote count is unanimous.
Step-by-step explanation:
For each person, there are only two possible outcomes. Either they vote yes, or they vote no. The probability of a person voting yes or no is independent of any other person. So we use the binomial probability distribution to solve this question.
Binomial probability distribution
The binomial probability is the probability of exactly x successes on n repeated trials, and X can only have two outcomes.

In which
is the number of different combinations of x objects from a set of n elements, given by the following formula.

And p is the probability of X happening.
Random voting:
So 50% of voting yes, 50% no, so 
15 members:
This means that 
What is the probability that the final vote count is unanimous?
Either all vote no(P(X = 0)) or all vote yes(P(X = 15)). So

In which



So

0.006% probability that the final vote count is unanimous.
Y=(x-h)^2+k
a shift to the right by c units would be y=(x-h-c)^2+k
so 5 to the right
g(x)=(x+3-5)^2-10
g(x)=(x-2)^2-10
first option
Answer:
- Keisha’s experimental probability is 1/50.
- When the inventory is 4000 clocks, the prediction is that 3920 clocks will work.
- Keisha will have more than 97% of the products working.
Step-by-step explanation:
These are three prediction that Keisha can make based on the report that said 6 of 300 clocks tested weren't working.
Base on that information, Keisha can calculate an experimental probability, dividing <em>clocks that don't work properly </em>by <em>the total amount of clocks</em><em>:</em>
<em>
</em>
Therefore, the probability of success is 100% - 2% = 98%.
This means that Keisha has a probability of having 98% of all clocks functioning properly. So, she can make the prediction:<em> from 4000 clocks, 3920 will work. </em>Also, she can predict that she will actually have more than 97% working, because the experimental probability is higher than that.