we know that
The measure of the interior angle is the half-sum of the arcs comprising it and its opposite.
so
<u>Find the measure of the angle LAM</u>
m∠LAM is equal to
![\frac{1}{2}*[arc\ KJ+arc\ LM]= \frac{1}{2}*[170+80]\\\\=125\ degrees](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B2%7D%2A%5Barc%5C%20KJ%2Barc%5C%20LM%5D%3D%20%5Cfrac%7B1%7D%7B2%7D%2A%5B170%2B80%5D%5C%5C%5C%5C%3D125%5C%20degrees)
<u>Find the measure of the angle MAJ</u>
we know that
m∠LAM+m∠MAJ=
° ------> by supplementary angles
m∠MAJ=
m∠MAJ=
°
therefore
<u>the answer is</u>
The measure of the angle MAJ is 
30 candles=100%
30% of 100%= 9 candles out of 100 candles
after blowing out 30% of the candles, 9 should be left lit.
What values of b satisfy 3(2b+3)^2 = 36
we have
3(2b+3)^2 = 36
Divide both sides by 3
(2b+3)^2 = 12
take the square root of both sides
( 2b+3)} =(+ /-) \sqrt{12} \\ 2b=(+ /-) \sqrt{12}-3
b1=\frac{\sqrt{12}}{2} -\frac{3}{2}
b1=\sqrt{3} -\frac{3}{2}
b2=\frac{-\sqrt{12}}{2} -\frac{3}{2}
b2=-\sqrt{3} -\frac{3}{2}
therefore
the answer is
the values of b are
b1=\sqrt{3} -\frac{3}{2}
b2=-\sqrt{3} -\frac{3}{2}
I found that the given prices are $ 4 per pack of pens and $ 3 per pack of penciles.
The question is how much the bookstore spent on pens.
Then you have to multiply the number packs of pens, which is 1,528, times the price per pack pens which is $ 4.
So, the answer is: 1528 packs of pens * $ 4 / pack of pens = $6112.