Answer: 9.312 m/s
Explanation:
The friction force (opposite to the motion) is Fa = μ*m*g*cos(α) with μ = kinetic friction. The force that makes the motion is
F = m*g*sin(α).
The Newton's law gives:
F - Fa = m*a
m*g*sin(α) - μ*m*g*cos(α) = m*a
g*sin(α) - μ*g*cos(α) = a so a = 4.335 m/s²
It's a uniformly accelerated motion:
Space
S = 0.5*a*t²
10 = 0.5*a*t²
=> t = 2.148 s
Velocity
V = a*t = 9.312 m/s.
Answer:
980 kJ
Explanation:
Work = change in energy
W = mgh
W = (1000 kg/m³ × 5.0 m³) (9.8 m/s²) (20 m)
W = 980,000 J
W = 980 kJ
The pump does 980 kJ of work.
Answer:
B.) to determine that electric beams in cathode ray tubes were actually made of particles
Explanation:
This is the right answer i just took the quiz on edge.
Answer:
(a) A = 0.650 m
(b) f = 1.3368 Hz
(c) E = 17.1416 J
(d) K = 11.8835 J
U = 5.2581 J
Explanation:
Given
m = 1.15 kg
x = 0.650 cos (8.40t)
(a) the amplitude,
A = 0.650 m
(b) the frequency,
if we know that
ω = 2πf = 8.40 ⇒ f = 8.40 / (2π)
⇒ f = 1.3368 Hz
(c) the total energy,
we use the formula
E = m*ω²*A² / 2
⇒ E = (1.15)(8.40)²(0.650)² / 2
⇒ E = 17.1416 J
(d) the kinetic energy and potential energy when x = 0.360 m.
We use the formulas
K = (1/2)*m*ω²*(A² - x²) (the kinetic energy)
and
U = (1/2)*m*ω²*x² (the potential energy)
then
K = (1/2)*(1.15)*(8.40)²*((0.650)² - (0.360)²)
⇒ K = 11.8835 J
U = (1/2)*(1.15)*(8.40)²*(0.360)²
⇒ U = 5.2581 J
The thermal energy is where the work of friction comes from. That is what stops it eventually. In this case a counter force of 10N is applied over the distance of 30.0m. The energy is given by Force*Distance. Here this is 300J. This friction work is the thermal energy.