answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
timofeeve [1]
2 years ago
7

On a certain planet, which is perfectly spherically symmetric, the free-fall acceleration has magnitude g = go at the north pole

and g = ago at the equator (with 0 < a < 1). find g(9), the freefall acceleration at colatitude 9 as a function of 9.

Physics
1 answer:
ohaa [14]2 years ago
5 0
The reason why there is a difference between free-fall acceleration is a centrifugal force.
I attached a diagram that shows how this force aligns with the force of gravity.
From the diagram we can see that:
F=F_g-F_{cf}=mg'-mw^2r'cos(\alpha)\\ ma=mg'-mw^2r'cos(\alpha)\\ a=g'-w^2rcos^2(\alpha)\\
Where g' is the free-fall acceleration when there is no centrifugal force, r is the radius of the planet, and w is angular frequency of planet's rotation. \alpha is the latitude.
We can calculate g' and wr^2 from the given conditions in the problem.
g(90)=g_0;\ g_0= g'-w^2rcos^2(90)\\&#10;g_0=g'\\&#10;g(0)=ag_0;\ ag_0=g_0-w^2rcos^2(0)\\&#10;ag_0=g_0-w^2r\\&#10;w^2r=g_0(a-1)&#10;
Our final equation is:
g=g_0-g_0(a-1)cos^2(\alpha)
Colatitude is:
\alpha_c=90^\circ-\alpha
The answer is:
g=g_0-g_0(a-1)cos^2(90-9)=g_0-g_0(a-1)sin^2(9)

You might be interested in
An 888.0 kg elevator is moving downward with a velocity of 0.800 m/s. It decelerates uniformly and comes to a stop in a distance
bagirrra123 [75]

Answer:

The value of tension on the cable T = 1065.6 N

Explanation:

Mass = 888 kg

Initial velocity ( u )= 0.8 \frac{m}{sec}

Final velocity ( V ) = 0

Distance traveled before come to rest = 0.2667 m

Now use third law of motion V^{2} = u^{2} - 2 a s

Put all the values in above formula we get,

⇒ 0 = 0.8^{2} - 2 × a ×0.2667

⇒ a = 1.2 \frac{m}{sec^{2} }

This is the deceleration of the box.

Tension in the cable is given by T = F = m × a

Put all the values in above formula we get,

T = 888 × 1.2

T = 1065.6 N

This is the value of tension on the cable.

5 0
2 years ago
The initial velocity of a 4.0-kg box is 11 m/s, due west. After the box slides 4.0 m horizontally, its speed is 1.5 m/s. Determi
ankoles [38]

Answer:

F = - 59.375 N

Explanation:

GIVEN DATA:

Initial velocity = 11 m/s

final velocity = 1.5 m/s

let force be F

work done =  mass* F = 4*F

we know that

Change in kinetic energy = work done

kinetic energy = = \frac{1}{2}*m*(v_{2}^{2}-v_{1}^{2})

kinetic energy = = \frac{1}{2}*4*(1.5^{2}-11^{2}) = -237.5 kg m/s2

-237.5 = 4*F

F = - 59.375 N

7 0
2 years ago
A man walks 30 m to the west, then 5 to the east in 45 seconds
exis [7]
His average speed is  (35m/45s) = 7/9 meters per second.

His average velocity is  (30m W + 5m E) / (45s) = 25 m/s West .
8 0
2 years ago
A figure skater rotating at 5.00 rad/s with arms extended has a moment of inertia of 2.25 kg·m2. If the arms are pulled in so t
Serggg [28]

a) 6.25 rad/s

The law of conservation of angular momentum states that the angular momentum must be conserved.

The angular momentum is given by:

L=I\omega

where

I is the moment of inertia

\omega is the angular speed

Since the angular momentum must be conserved, we can write

L_1 = L_2\\I_1 \omega_1 = I_2 \omega_2

where we have

I_1 = 2.25 kg m^2 is the initial moment of inertia

\omega_1 = 5.00 rad/s is the initial angular speed

I_2 = 2.25 kg m^2 is the final moment of inertia

\omega_2 is the final angular speed

Solving for \omega_2, we find

\omega_2 = \frac{I_1 \omega_1}{I_2}=\frac{(2.25 kg m^2)(5.00 rad/s)}{1.80 kg m^2}=6.25 rad/s

b) 28.1 J and 35.2 J

The rotational kinetic energy is given by

K=\frac{1}{2}I\omega^2

where

I is the moment of inertia

\omega is the angular speed

Applying the formula, we have:

- Initial kinetic energy:

K=\frac{1}{2}(2.25 kg m^2)(5.00 rad/s)^2=28.1 J

- Final kinetic energy:

K=\frac{1}{2}(1.80 kg m^2)(6.25 rad/s)^2=35.2 J

7 0
2 years ago
For nitrogen feel like with its temperature must be within 12.78 Fahrenheit of -333.22 Fahrenheit which equation can be used to
photoshop1234 [79]

Answer:

The following equation can be used.

(32°F − 32) × 5/9=C

7 0
2 years ago
Read 2 more answers
Other questions:
  • A skydiver deploys his parachute when he is 1000m directly above his desired landing spot. He then falls through the air at a st
    7·1 answer
  • The square loop shown in the figure moves into a 0.80 T magnetic field at a constant speed of 10 m/s. The loop has a resistance
    12·1 answer
  • The gamma photons created during a PET scan are detected when they encounter a scintillator and produce a burst of light. This l
    11·1 answer
  • Galactic Alliance Junior Mission Officer (GAJMO) Bundit Nermalloy is predicting the kinetic energy of a supply spacecraft, which
    12·1 answer
  • Astronauts in the International Space Station must work out every day to counteract the effects of weightlessness. Researchers h
    15·1 answer
  • A person with normal vision can focus on objects as close as a few centimeters from the eye up to objects infinitely far away. T
    7·1 answer
  • What is the mass of a student who weighs 618 Newton?
    13·1 answer
  • A cliff diver running 3.60 m/s dives out horizontally from the edge of a vertical cliff and reaches the water below 2.00 s later
    15·1 answer
  • If Katie swims from one end of the pool, to the other side, and then swims back to her original spot, her average velocity is ha
    15·1 answer
  • How to find id in this app. ​
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!