Answer:
100 : 250
Step-by-step explanation:
Sum the parts of the ratio, 2 + 5 = 7 parts
Divide the quantity by 7 to find the value of one part of the ratio.
350 ÷ 7 = 50 ← value of 1 part of the ratio, thus
2 parts = 2 × 50 = 100
5 parts = 5 × 50 = 250
350 = 100 : 250 in the ratio 2 : 5
Answer:
The probability that the service desk will have at least 100 customers with returns or exchanges on a randomly selected day is P=0.78.
Step-by-step explanation:
With the weekly average we can estimate the daily average for customers, assuming 7 days a week:

We can model this situation with a Poisson distribution, with parameter λ=108. But because the number of events is large, we use the normal aproximation:

Then we can calculate the z value for x=100:

Now we calculate the probability of x>100 as:

The probability that the service desk will have at least 100 customers with returns or exchanges on a randomly selected day is P=0.78.
Answer:
989000
Step-by-step explanation:
Divide 2,967 ÷ 0.003
Answer:
88.00 and subtract 28 and the 3 shirts were
Step-by-step explanation:
answer 60
Percent of red lights last between 2.5 and 3.5 minutes is 95.44% .
<u>Step-by-step explanation:</u>
Step 1: Sketch the curve.
The probability that 2.5<X<3.5 is equal to the blue area under the curve.
Step 2:
Since μ=3 and σ=0.25 we have:
P ( 2.5 < X < 3.5 ) =P ( 2.5−3 < X−μ < 3.5−3 )
⇒ P ( (2.5−3)/0.25 < (X−μ)/σ < (3.5−3)/0.25)
Since, Z = (x−μ)/σ , (2.5−3)/0.25 = −2 and (3.5−3)/0.25 = 2 we have:
P ( 2.5<X<3.5 )=P ( −2<Z<2 )
Step 3: Use the standard normal table to conclude that:
P ( −2<Z<2 )=0.9544
Percent of red lights last between 2.5 and 3.5 minutes is
% .