Answer:
at y=6.29 cm the charge of the two distribution will be equal.
Explanation:
Given:
linear charge density on the x-axis, 
linear charge density of the other charge distribution, 
Since both the linear charges are parallel and aligned by their centers hence we get the symmetric point along the y-axis where the electric fields will be equal.
Let the neural point be at x meters from the x-axis then the distance of that point from the y-axis will be (0.11-x) meters.
<u>we know, the electric field due to linear charge is given as:</u>

where:
linear charge density
r = radial distance from the center of wire
permittivity of free space
Therefore,





∴at y=6.29 cm the charge of the two distribution will be equal.
Answer:
1/2
Explanation:
We need to make a couple of considerations but basically the problem is solved through the conservation of energy.
I attached a diagram for the two surfaces and begin to make the necessary considerations.
Rough Surface,
We know that force is equal to,



Matching the two equation we have,


Applying energy conservation,





Frictionless surface




Given the description we apply energy conservation taking into account the inertia of a sphere. Then the relation between
and
is given by


Answer:
An Element
Explanation:
Such substance cannot be an element because an element cannot be chemically disintegrated (i.e it cannot be disintegrated via chemical reaction).
A. The horizontal velocity is
vx = dx/dt = π - 4πsin (4πt + π/2)
vx = π - 4π sin (0 + π/2)
vx = π - 4π (1)
vx = -3π
b. vy = 4π cos (4πt + π/2)
vy = 0
c. m = sin(4πt + π/2) / [<span>πt + cos(4πt + π/2)]
d. m = </span>sin(4π/6 + π/2) / [π/6 + cos(4π/6 + π/2)]
e. t = -1.0
f. t = -0.35
g. Solve for t
vx = π - 4πsin (4πt + π/2) = 0
Then substitute back to solve for vxmax
h. Solve for t
vy = 4π cos (4πt + π/2) = 0
The substitute back to solve for vymax
i. s(t) = [<span>x(t)^2 + y</span>(t)^2]^(1/2)
h. s'(t) = d [x(t)^2 + y(t)^2]^(1/2) / dt
k and l. Solve for the values of t
d [x(t)^2 + y(t)^2]^(1/2) / dt = 0
And substitute to determine the maximum and minimum speeds.
The answer is 1.01 x 10^(-11) N. I arrived to this answer through calculating the GPEs of both balls. Bjorn's ball has a GPE of 1.402 x 10^(-11) N. Billie Jean's ball has a GPE of <span>2.503 x 10^(-11) N. I subtracted the two and I found that Billie Jean's tennis ball has a GPE of 1.01 x 10^(-11) more than Bjorn's tennis ball.</span>