We have to write an equation that uses this info so we can find the cost to ship that package. However, the package weight is given to us in grams and we need it in ounces. So first thing we are going to do is convert that 224 g to ounces. Use the fact that 1 g = .035274 ounces to convert.
. Do the multiplication and cancel out the label of grams and we have 7.901376 ounces. Ok. We know that it costs .57 to mail the package for the first ounce. We have almost 8 ounces. So no matter what, we are paying .57. For each additional ounce we are paying .32. The number of .32's we have to spend depends upon how much the package goes over the first ounce. For the first ounce we pay .57, then for the remaining 6.901376 ounces we pay .32 per ounce. Our equation looks like this: C(x) = .32(6.901376) + .57 and we need to solve for the cost, C(x). Doing the multiplication we find that it would cost $2.78 to ship that package.
Answer:
a. z = 2.00
Step-by-step explanation:
Hello!
The study variable is "Points per game of a high school team"
The hypothesis is that the average score per game is greater than before, so the parameter to test is the population mean (μ)
The hypothesis is:
H₀: μ ≤ 99
H₁: μ > 99
α: 0.01
There is no information about the variable distribution, I'll apply the Central Limit Theorem and approximate the sample mean (X[bar]) to normal since whether you use a Z or t-test, you need your variable to be at least approximately normal. Considering the sample size (n=36) I'd rather use a Z-test than a t-test.
The statistic value under the null hypothesis is:
Z= X[bar] - μ = 101 - 99 = 2
σ/√n 6/√36
I don't have σ, but since this is an approximation I can use the value of S instead.
I hope it helps!
Both Maria and Edwin get the same price on the end.
$26.50*75%/100=$19.875
$19.875*10%/100+$19.875=$21.86
They are purchased copy of the book for $21.86 each.
Theay have $1.14 after purchasing both.