Answer:
y''=-1.26
Step-by-step explanation:
We are given that 
We have evaluate the second order derivative of y w.r.t. x when x=2 and y=3.
Differentiate w.r.t x
Then , we get




Again differentiate w.r.t.x
Then , we get


Using value of y'


Substitute x=2 and y=3
Then, we get 

Hence,y''=-1.26
<span>With algebraic expressions, you can’t add and subtract any terms like you can add and subtract numbers. Terms must be like terms in order to combine them. So, you can’t always simplify an algebraic expression by following the order of operations. You have to use the distributive property to rewrite the expression and then combine like terms to simplify. With numeric expressions, you can either simplify inside the parentheses first or use the distributive property first.</span>
I agree with the given answer because of the gain or loss on retirement of bonds = book value of bonds - the amount paid to the bondholders
Answer:
Multiply by ∛2 and translate the graph to left by 4 units.
Step-by-step explanation:
The initial function given is:
y = -∛(x - 4)
The transformed function is:
y = -∛(2x - 4)
Consider the initial function.
y = -∛(x - 4)
(Represented by Black line in the graph)
Multiply the function by ∛2. The function becomes:
y = -∛(x - 4) × ∛2
y = -∛(2)(x-4)
y = -∛(2x-8)
(Represented by Red line in the graph represents this function)
Translate the graph 4 units to the left by adding 4 to the x component:
y = -∛(2x-8+4)
y= -∛(2x - 4)
(Represented by Blue line in the graph)
Economic Order Quantity
The economic order quantity, that is, the order quantity that minimizes the inventory cost is:
300 cases of tennis balls
Data and Calculations:
Sales of tennis balls for the coming year = 10,000 units
Carrying (holding) costs per case = $10
Cost of placing orders with the manufacturer = $45 per order
Economic Order Quantity (EOQ) = square root of (2 * Annual Demand/Sales * Ordering cost)/Carrying cost per case
= square root of (2 * 10,000 * $45)/$10
= square root of 90,000
= 300 tennis balls
This implies that the distributor will place about 33 orders in the coming year. With each order, the quantity placed is 300 units. This is the economic order quantity that will minimize its inventory cost for the year.