Answer:
The matrix equation would be
,
and the resulting matrix is
![\left[\begin{array}{ccc}6\\4\\3\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D6%5C%5C4%5C%5C3%5Cend%7Barray%7D%5Cright%5D)
Step-by-step explanation:
We first start with what is called the coefficient matrix; it contains the coefficients of the variables in the system of equations.
The coefficients of the first equation are 1, 1 and 1; this will be the first row of the matrix.
The coefficients of the second equation are 7, 15 and 22; this will be the second row of the matrix.
The coefficients of the third equation are 1, 0 and -1 (0 because there is no variable m in the equation); this will be the third row of the matrix, and gives us the coefficient matrix
![\left[\begin{array}{ccc}1&1&1\\7&15&22\\1&0&-1\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%261%261%5C%5C7%2615%2622%5C%5C1%260%26-1%5Cend%7Barray%7D%5Cright%5D)
The next matrix in the equation will be the variable matrix. It will contain the variables for the equation; for ours, it is s, m and l:
![\left[\begin{array}{ccc}s\\m\\l\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Ds%5C%5Cm%5C%5Cl%5Cend%7Barray%7D%5Cright%5D)
The last matrix in our equation will be the constant matrix, which has the values after the equals in each equation:
![\left[\begin{array}{ccc}13\\168\\3\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D13%5C%5C168%5C%5C3%5Cend%7Barray%7D%5Cright%5D)
This gives us the equation:
![\left[\begin{array}{ccc}1&1&1\\7&15&22\\1&0&-1\end{array}\right] \times \left[\begin{array}{ccc}s\\m\\l\end{array}\right] =\left[\begin{array}{ccc}13\\168\\3\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%261%261%5C%5C7%2615%2622%5C%5C1%260%26-1%5Cend%7Barray%7D%5Cright%5D%20%5Ctimes%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Ds%5C%5Cm%5C%5Cl%5Cend%7Barray%7D%5Cright%5D%20%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D13%5C%5C168%5C%5C3%5Cend%7Barray%7D%5Cright%5D)
To solve this, we find the inverse of the coefficient matrix and multiply it by the constant matrix:
![\left[\begin{array}{ccc}s\\m\\l\end{array}\right] =\left[\begin{array}{ccc}1&1&1\\7&15&22\\1&0&-1\end{array}\right] ^{-1} \times \left[\begin{array}{ccc}13\\168\\3\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Ds%5C%5Cm%5C%5Cl%5Cend%7Barray%7D%5Cright%5D%20%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%261%261%5C%5C7%2615%2622%5C%5C1%260%26-1%5Cend%7Barray%7D%5Cright%5D%20%5E%7B-1%7D%20%5Ctimes%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D13%5C%5C168%5C%5C3%5Cend%7Barray%7D%5Cright%5D)
Using a graphing calculator to perform this, we get the result
![\left[\begin{array}{ccc}6\\4\\3\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D6%5C%5C4%5C%5C3%5Cend%7Barray%7D%5Cright%5D)
This means the small contains 6 packages; medium contains 4; and large contains 3.