Answer:
Rina is 1/4 feet taller than Ryan
Step-by-step explanation:
(height of Rina)-(height of Ryan)
6x+3/8-(5x+1/8)
6x+3/8-5x-1/8
x+3-1/8
x+2/8
x+1/4
Benchmark are numbers that are used as standards to which the rest of the data is compared to. When counting numbers using a number line, the benchmark numbers are the intervals written on the axis. For benchmark numbers of 10, the number line on top of the attached picture is shown. Starting from 170, the tick marks are added by 10, such that the next numbers are 180, 190, 200, and so on and so forth. When you want to find 410, just find the benchmark number 410.
The same applies to benchmark numbers in intervals of 100. If you want to find 170, used the benchmark numbers 100 and 200. Then, you estimate at which point represents 170. For 410, you base on the benchmark numbers 400 and 500.
Answer:
40 * x - 600 = 0
Step-by-step explanation:
The first thing is to identify the variable (x) of the equation and they will be the number of days that Leilah will take to read her flashcards. Now if you need to study 600 out of 2400, it is because you have read 1800. Therefore we have to:
2400 - 1800 = 40 * x
rearranging
40 * x - 600 = 0
The above would be the equation of the situation
Answer:
Step-by-step explanation:
Part A can be seen in the attached picture below. Since there are 76 students that have both a license and a job we need to subtract 76 from each to get the amount that only have either a license or a job as seen in the table. Also we can see from the table that it sums up to 145 students, meaning that 5 students do not have neither a job or a license.
Part B, to calculate this we need to divide the amount of students that ONLY have a job by the total amount of students that have a job (since the rest of those students also have a license) Therefore:
17 / 93 = 0.1828
Now we can multiply this result by 100 to get the percentage.
0.1828 * 100 = 18.28%
let's say the point dividing JK is say point P, so the JK segment gets split into two pieces, JP and PK
![\bf ~~~~~~~~~~~~\textit{internal division of a line segment} \\\\\\ J(-25,10)\qquad K(5,-20)\qquad \qquad \stackrel{\textit{ratio from J to K}}{7:3} \\\\\\ \cfrac{J~~\begin{matrix} P \\[-0.7em]\cline{1-1}\\[-5pt]\end{matrix}~~}{~~\begin{matrix} P \\[-0.7em]\cline{1-1}\\[-5pt]\end{matrix}~~K} = \cfrac{7}{3}\implies \cfrac{J}{K} = \cfrac{7}{3}\implies3J=7K\implies 3(-25,10)=7(5,-20)\\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=%5Cbf%20~~~~~~~~~~~~%5Ctextit%7Binternal%20division%20of%20a%20line%20segment%7D%20%5C%5C%5C%5C%5C%5C%20J%28-25%2C10%29%5Cqquad%20K%285%2C-20%29%5Cqquad%20%5Cqquad%20%5Cstackrel%7B%5Ctextit%7Bratio%20from%20J%20to%20K%7D%7D%7B7%3A3%7D%20%5C%5C%5C%5C%5C%5C%20%5Ccfrac%7BJ~~%5Cbegin%7Bmatrix%7D%20P%20%5C%5C%5B-0.7em%5D%5Ccline%7B1-1%7D%5C%5C%5B-5pt%5D%5Cend%7Bmatrix%7D~~%7D%7B~~%5Cbegin%7Bmatrix%7D%20P%20%5C%5C%5B-0.7em%5D%5Ccline%7B1-1%7D%5C%5C%5B-5pt%5D%5Cend%7Bmatrix%7D~~K%7D%20%3D%20%5Ccfrac%7B7%7D%7B3%7D%5Cimplies%20%5Ccfrac%7BJ%7D%7BK%7D%20%3D%20%5Ccfrac%7B7%7D%7B3%7D%5Cimplies3J%3D7K%5Cimplies%203%28-25%2C10%29%3D7%285%2C-20%29%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)
![\bf P=\left(\frac{\textit{sum of "x" values}}{\textit{sum of ratios}}\quad ,\quad \frac{\textit{sum of "y" values}}{\textit{sum of ratios}}\right)\\\\[-0.35em] ~\dotfill\\\\ P=\left(\cfrac{(3\cdot -25)+(7\cdot 5)}{7+3}\quad ,\quad \stackrel{\textit{y-coordinate}}{\cfrac{(3\cdot 10)+(7\cdot -20)}{7+3}}\right) \\\\\\ P=\left( \qquad ,\quad \cfrac{30-140}{10} \right)\implies P=\left(\qquad ,~~\cfrac{-110}{10} \right)\implies P=(\qquad ,\quad -11)](https://tex.z-dn.net/?f=%5Cbf%20P%3D%5Cleft%28%5Cfrac%7B%5Ctextit%7Bsum%20of%20%22x%22%20values%7D%7D%7B%5Ctextit%7Bsum%20of%20ratios%7D%7D%5Cquad%20%2C%5Cquad%20%5Cfrac%7B%5Ctextit%7Bsum%20of%20%22y%22%20values%7D%7D%7B%5Ctextit%7Bsum%20of%20ratios%7D%7D%5Cright%29%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20P%3D%5Cleft%28%5Ccfrac%7B%283%5Ccdot%20-25%29%2B%287%5Ccdot%205%29%7D%7B7%2B3%7D%5Cquad%20%2C%5Cquad%20%5Cstackrel%7B%5Ctextit%7By-coordinate%7D%7D%7B%5Ccfrac%7B%283%5Ccdot%2010%29%2B%287%5Ccdot%20-20%29%7D%7B7%2B3%7D%7D%5Cright%29%20%5C%5C%5C%5C%5C%5C%20P%3D%5Cleft%28%20%5Cqquad%20%2C%5Cquad%20%5Ccfrac%7B30-140%7D%7B10%7D%20%5Cright%29%5Cimplies%20P%3D%5Cleft%28%5Cqquad%20%2C~~%5Ccfrac%7B-110%7D%7B10%7D%20%5Cright%29%5Cimplies%20P%3D%28%5Cqquad%20%2C%5Cquad%20-11%29)