Answer:
r = 10q/(p + 30)
so put p+30 in the blank
Step-by-step explanation:
p=10(q - 3r)/r
p = (10q - 30r)/r
pr = 10q - 30r
pr + 30r = 10q
r(p + 30) = 10q
r = 10q/(p + 30)
Answer:
Given Below
Step-by-step explanation:
v = u+at
u+at = v
at = v-u
t = v-u/a
Hope this helps
Hello,
I am going to remember:
y'+3y=0==>y=C*e^(-3t)
y'=C'*e^(-3t)-3C*e^(-3t)
y'+3y=C'*e^(-3t)-3Ce^(-3t)+3C*e^(-3t)=C'*e^(-3t) = t+e^(-2t)
==>C'=(t+e^(-2t))/e^(-3t)=t*e^(3t)+e^t
==>C=e^t+t*e^(3t) /3-e^(3t)/9
==>y= (e^t+t*e^(3t)/3-e^(3t)/9)*e^(-3t)+D
==>y=e^(-2t)+t/3-1/9+D
==>y=e^(-2t)+t/3+k
Answer:
There is a 38.97% probability that this student earned an A on the midterm.
Step-by-step explanation:
The first step is that we have to find the percentage of students who got an A on the final exam.
Suppose 13% students earned an A on the midterm. Of those students who earned an A on the midterm, 47% received an A on the final, and 11% of the students who earned lower than an A on the midterm received an A on the final.
This means that
Of the 13% of students who earned an A on the midterm, 47% received an A on the final. Also, of the 87% who did not earn an A on the midterm, 11% received an A on the final.
So, the percentage of students who got an A on the final exam is

To find the probability that this student earned an A on the final test also earned on the midterm, we divide the percentage of students who got an A on both tests by the percentage of students who got an A on the final test.
The percentage of students who got an A on both tests is:

The probability that the student also earned an A on the midterm is

There is a 38.97% probability that this student earned an A on the midterm.