answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Setler79 [48]
2 years ago
7

Find the correct sum of each geometric sequence.

Mathematics
2 answers:
Alex777 [14]2 years ago
5 0
A geometric sequence with first term "a" and common ratio "r" has "nth" term:

ar^(n-1)

And the sum of a geometric sequence with "n" terms, first term "a," and common ratio "r" has the sum "a(r^n - 1)/r - 1.

1.) 765

2.) 300

3.) 1441

4.) 244

5.) 2101
grin007 [14]2 years ago
3 0

Answer:

1.765

2.301

3.1441

4.183

5.2101

Step-by-step explanation:

We are given that

1.a_1=3, a_8=384,r=2

We know that sum of nth term in G.P is given by

S_n=\frac{a(r^n-1)}{r-1} when r > 1

S_n=\frac{a(1-r^n)}{1-r} when r < 1

n=8, r=2 a=3

Therefore,S_8=\frac{3((2)^8-1)}{2-1} because r > 1

S_8=3\times (256-1)=765

1. Sum of given G.P is 765

2.a_1=343,a_n=-1,r=-\frac{1}{7}

nth term of G.P is given by the formula

a_n=ar^{n-1}

Therefore , applying the formula

-1=343\times (\frac{-1}{7}}^{n-1}

\frac{-1}{343}=(\frac{-1}{7})^{n-1}

(\frac{-1}{7})^3=(\frac{-1}{7})^{n-1}

When base equal on both side then power should be equal

Then we get n-1=3

n=3+1=4

Applying the formula of sum of G.P

S_4=\frac{343(1-(\frac{-1}{7})^4)}{1-\frac{-1}{7}} where r < 1

S_4=\frac{343(1+\frac{1}{343})}{\frac{8}{7}}

S_4=343\times\frac{344}{343}\times\frac{7}{8}

S_4=301

3.a_1=625, n=5,r=\frac{3}{5} < 1

Therefore, S_5=\frac{625(1-(\frac{3}{5})^5)}{1-\frac{3}{5}}

S_5=625\times \frac{3125-243}{3125}\times \frac{5}{2}

S_5=625\times\frac{2882}{3125}\times\frac{5}{2}

S_5=1441

4.a_1=4,n=5,r=-3

S_5=\frac{4(1-(-3)^5}{1-(-3)} where r < 1

S_5=\frac{3(1+243)}{1+3}

S_5=3\times 61=183

5.a_1=2402,n=5,r=\frac{-1}{7}

S_5=\frac{2401(1-(\frac{-1}{7})^5)}{1-\frac{-1}{7}} r < 1

S_5=\frac{2401(1+\frac{1}{16807})}{\frac{7+1}{7}}

S_5=2401\times\frac{16808}{16807}\times\frac{7}{8}

S_5=2101

You might be interested in
the daily production cost, c, for x units is modeled by the equation: c = 200 – 7x 0.345x2 explain how to find the domain and ra
jenyasd209 [6]
C(x) = 200 - 7x + 0.345x^2

Domain is the set of x-values (i.e. units produced) that are feasible. This is all the positive integer values + 0, in case that you only consider that can produce whole units.

Range is the set of possible results for c(x), i.e. possible costs.

You can derive this from the fact that c(x) is a parabole and you can draw it, for which you can find the vertex of the parabola, the roots, the y-intercept, the shape (it open upwards given that the cofficient of x^2 is positive). Also limit the costs to be positive.

You can substitute some values for x to help you, for example:

x      y
0    200
1    200 -7 +0.345 = 193.345
2    200 - 14 + .345 (4) = 187.38
3    200 - 21 + .345(9) = 182.105
4    200 - 28 + .345(16) = 177.52
5    200 - 35 + 0.345(25) = 173.625
6    200 - 42 + 0.345(36) = 170.42

10  200 - 70 + 0.345(100) =164.5
11 200 - 77 + 0.345(121) = 164.745
 
 
The functions does not have real roots, then the costs never decrease to 0.

The function starts at c(x) = 200, decreases until the vertex, (x =10, c=164.5) and starts to increase.

Then the range goes to 164.5 to infinity, limited to the solutcion for x = positive integers.

6 0
2 years ago
Read 2 more answers
What is the quadratic regression equation that fits these data?
Tresset [83]

Answer:

the answer is a.

Step-by-step explanation:

I plugged your data into a graphing calculator, and got a quad reg in the picture.

5 0
2 years ago
Read 2 more answers
How does the exponent of each power of ten correspond with placing a decimal
Rom4ik [11]
You would then move the decimal how many places you were given
3 0
2 years ago
The geometric average of -12%, 20%, and 25% is _________.
Grace [21]
<span>20.28% is the answer</span>
8 0
2 years ago
Brian is choosing an appetizer, an entrée, and a drink. If he
Jet001 [13]

Answer:

Total number of possible outcomes = 27  

Number of favorable outcomes =  1

Probability = 1/27

Step-by-step explanation:

7 0
2 years ago
Read 2 more answers
Other questions:
  • Circle tens to make 1 hundred. Write the number in different ways?
    10·2 answers
  • Budgeting for home maintenance early can save money in the long run. Why save early compared to later, especially if the home is
    11·2 answers
  • How is 2 ones the same has 20 tenths
    9·2 answers
  • In two or more complete sentences, compare the number of x-intercepts in the graph of f(x) =x2 to the number of x-intercepts in
    14·1 answer
  • Stu hiked a trail at an average rate of 3 miles per hour. He ran back on the same trail at an average rate of 5 miles per hour.
    13·2 answers
  • Which scenario is most likely the one shown on the graph?
    5·2 answers
  • Rewrite the given expression in the form 3^u where u is a constant or an algebraic expression.
    8·2 answers
  • Berto has $12 to put gas in his car. If gas costs $3.75 per gallon, which ordered pair on the graph of the line relating number
    9·2 answers
  • A.You have deposited $400 in a simple interest savings account, which pays three percent interest annually. Find the amount of i
    13·1 answer
  • A bookcase is 2.3 metres tall and the height of each self is 34 cm how many shelf are there?​
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!