I'm assuming that by "opposite of 12", it means -12
If so, the answer would be 2
Answer:
a. 0.50
Step-by-step explanation:
The standard error of the mean is the standard deviation of the population divided by the square root of the sample size.
In this problem, we have that:
Standard deviation of the population: 6 hours
Sample size: 144
Square root of 144 is 12.
So the standard error of the sample mean is 6/12 = 0.5.
Check the picture below.
is not very specific above, but sounds like it's asking for an equation for the trapezoid only, mind you, there are square tiles too.
but let's do the trapezoid area then,
![\bf a^{\frac{{ n}}{{ m}}} \implies \sqrt[{ m}]{a^{ n}} \qquad \qquad \sqrt[{ m}]{a^{ n}}\implies a^{\frac{{ n}}{{ m}}}\\\\ -------------------------------\\\\](https://tex.z-dn.net/?f=%5Cbf%20a%5E%7B%5Cfrac%7B%7B%20n%7D%7D%7B%7B%20m%7D%7D%7D%20%5Cimplies%20%20%5Csqrt%5B%7B%20m%7D%5D%7Ba%5E%7B%20n%7D%7D%20%5Cqquad%20%5Cqquad%0A%5Csqrt%5B%7B%20m%7D%5D%7Ba%5E%7B%20n%7D%7D%5Cimplies%20a%5E%7B%5Cfrac%7B%7B%20n%7D%7D%7B%7B%20m%7D%7D%7D%5C%5C%5C%5C%0A-------------------------------%5C%5C%5C%5C)
Answer:
So that means length of the bike is approx 5.7 rulers.
Step-by-step explanation:
the question says to estimate how many 12-inch rulers will be about the same length as a bike. In other words we have to measure the length of bike by in terms of ruler like 3 ruler length or 5 rular length etc.
Type of bike is not mentioned so i'm going to use bicyle.
From internet I found that approx lenght of a bike ( bicycle) is = 68 inches.
Given that 1 ruler = 12 inches
So number of rulers that can fit into 68 inches can be found by dividing 68 by 12
68/12 = 5.7
Answer:
ai) n(E⋂C) = ∅ = null
n(E⋂G) = 4
aii) see attachment
bi) n(C⋂G) = x = 1
bii) n(G) only = 3
Step-by-step explanation:
Let chemistry = C
Economic = E
Government = G
n(E) = 12
n(G) = 8
n(C) = 7
ai) number of pupils for economics and chemistry = 0
number of pupils for economics and government = 4
The set notation for both:
n(E⋂C) = ∅ = null
n(E⋂G) = 4
aii) find attached the Venn diagram
bi) n(C⋂G) = ?
Let number of n(C⋂G) = x
From the Venn diagram
n(C) only = 12-4 = 8
n(G) only = 8-(4+x) = 4-x
n(E) only = 7-x
n(E⋂C⋂G) = 0
n(E⋂C) = 0
n(E⋂G) = 4
Total: 8+ 4-x + 7-x + x + 0+0+4 = 22
23 -x = 22
23-22 = x
x = 1
n(C⋂G) = x = 1
Number of pupils that take both chemistry and government = 1
(bii) government only = n(G) only = 4-x
n(G) only = 4-1 = 3
Number of students that take government only = 3