Answer:
Kb = 0.428 m/°C
Explanation:
To solve this problem we need to use the <em>boiling-point elevation formula</em>:
- <em>Tsolution</em> - <em>Tpure solvent</em> = Kb * m
Where <em>Tsolution</em> and <em>Tpure solvent</em> are the boiling point of the CS₂ solution (47.52 °C) and of pure CS₂ (46.3 °C), respectively. Kb is the constant asked by the problem, and m is the molality of the solution.
So in order to use that equation and solve for Kb, first we <em>calculate the molality of the solution</em>.
molality = mol solute / kg solvent
- Density of CS₂ = 1.26 g/cm³
- Mass of 410.0 mL of CS₂ ⇒ 410 cm³ * 1.26 g/cm³ = 516.6 g = 0.5166 kg
molality = 0.270 mol / 0.5166 kg = 0.5226 m
Now we <u>solve for Kb</u>:
<em>Tsolution</em> - <em>Tpure solvent</em> = Kb * m
- 47.52 °C - 46.3 °C = Kb * 0.5226 m
First let us determine the electronic configuration of
Bromine (Br). This is written as:
Br = [Ar] 3d10 4s2 4p5
Then we must recall that the greatest effective nuclear
charge (also referred to as shielding) greatly increases as distance of the
orbital to the nucleus also increases. So therefore the electron in the
farthest shell will experience the greatest nuclear charge hence the answer is:
<span>4p orbital</span>
Answer:
the ball will move towards the big bully
The kinetic energy of the products is equal to the energy liberated which is 92.2 keV. But let's convert the unit keV to Joules. keV is kiloelectro volt. The conversion that we need is: 1.602×10⁻¹⁹ <span>joule = 1 eV
Kinetic energy = 92.2 keV*(1,000 eV/1 keV)*(</span>1.602×10⁻¹⁹ joule/1 eV) = 5.76×10²³ Joules
From kinetic energy, we can calculate the velocity of each He atom:
KE = 1/2*mv²
5.76×10²³ Joules = 1/2*(4)(v²)
v = 5.367×10¹¹ m/s
Answer: Option (e) is the correct answer.
Explanation:
A bond that is formed when an electron is transferred from one atom to another results in the formation of an ionic bond.
For example, NaBr will be an ionic compound as there is transfer of electron from Na to Br.
Whereas a bond that is formed by sharing of electrons is known as a covalent bond.
For example,
will be a covalent compound as there is sharing of electron between carbon and bromine atom.
Also, when electrons are shared between the combining atoms and there is large difference in electronegativity of these atoms then partial charges develop on these atoms. As a result, it forms a polar covalent bond.
For example, in a HBr compound there is sharing of electrons between H and Br. Also, due to difference in electronegativity there will be partial positive charge on H and partial negative charge on Br.
Thus, we can conclude that out of the given options HBr is the only compound that has polar covalent bonds.