Notice that

so the constraint is a set of two lines,

and only the first line passes through the first quadrant.
The distance between any point
in the plane is
, but we know that
and
share the same critical points, so we need only worry about minimizing
. The Lagrangian for this problem is then

with partial derivatives (set equal to 0)



We have

which tells us that

so that
is a critical point. The Hessian for the target function
is

which is positive definite for all
, so the critical point is the site of a minimum. The minimum distance itself (which we don't seem to care about for this problem, but we might as well state it) is
.
When we solve these equations x= 7.5 and y= 1.5.
Answer:
A
C
D
E
Step-by-step explanation:
Exterior angles can be described as the angles that are formed between the side of a polygon and the extended adjacent side of the polygon.
Or an exterior angle is the angle that is not inside the triangle formed.
The angles inside the triangle are interior angles.
Exterior angles are :
2
3
4
6
Interior angles are :
1
5