Answer is: the mass of a block of magnesium is 177.75 grams.
m(Fe) = 826 g.
d(Fe) = 7.9 g/cm³.
1) Calculate volume of iron and magnesium:
d(Fe) = m(Fe) ÷ V(Fe).
V(Fe) = m(Fe) ÷ d(Fe).
V(Fe) = 826 g ÷ 7.9 g/cm³.
V(Fe) = V(Mg) = 104.56 cm³.
2) Calculate mass of magnesium:
m(Mg) = V(Mg) · d(Mg).
m(Mg) = 104.56 g/cm³ · 1.7 g/cm³.
m(Mg) = 177.75 g.
Answer:
The maximum wavelength of light for which a carbon-carbon triple bond could be broken by absorbing a single photon is 143 nm.
Explanation:
It takes 839 kJ/mol to break a carbon-carbon triple bond.
Energy required to break 1 mole of carbon-carbon triple bond = E = 839 kJ
E = 839 kJ/mol = 839,000 J/mol
Energy required to break 1 carbon-carbon triple bond = E'

The energy require to single carbon-carbon triple bond will corresponds to wavelength which is required to break the bond.
(Using planks equation)


The maximum wavelength of light for which a carbon-carbon triple bond could be broken by absorbing a single photon is 143 nm.
<h3><u>Answer</u>;</h3>
Groups 14 and 15 each contain metals, nonmetals, and metalloids while Group 13 contains metals and a metalloid, and Group 16 contains metalloids and nonmetals.
<h3><u>Explanation;</u></h3>
- Groups 13–16 of the periodic table contain one or more metalloids, in addition to metals, nonmetals, or both.
- Unlike other groups of the periodic table, which contain elements in one class, groups 13–16 referred to as mixed groups contain elements in at least two different classes. In addition to metalloids, they also contain metals, nonmetals, or both.
- <em><u>Group 14 also known as the carbon group contains carbon which is a non metal, silicon and germanium which are metalloids and tin and lead which are metals.</u></em>
- <em><u>Group 15 also known as the Nitrogen group contains non metals such as oxygen, metalloid tellurium and a metal polonium.</u></em>
Answer : Option C) Atomic Size
Explanation : The atomic radius of the elements is found to be decreasing if we go from left to right in the modern periodic table. Accordingly,
increases as the number of shielding electrons present in the atomic nucleus of the periodic elements which lies in the same row remains constant while the number of protons in each atomic shell increases.
The effective nuclear charge
of an atom is defined as the net positive charge which is felt by the valence electron of the atomic element.
When
is observed to decrease, it is seen that the atomic radius grows in size. So, it explains the inverse relationship between both. This phenomenon occurs, because there is more screening of the electrons from the nucleus taking place, which is observed due to decrease the attraction between the electron and the nucleus.