Answer:
3:1
Explanation:
Stearic acid - C18H36O2
Fructose- C6H12O6
Since the energy content of food is roughly proportional to the carbon content. It means:
C18/C6 = 3 or 3:1
This explains why fats and oil are the major source of energy in the body and not carbohydrates. This is due to Fats and oil having larger amounts of Carbon compared to Carbohydrates.
The concentration of a solution is the number of moles of solute per fixed volume of solution.
Concentration (C) = number of moles of solute (n) / volume of the solution (v)
we have to find the volume of the solution when 36.0 g of Ca(OH)₂ is added to water to make a solution of concentration 0.530 M
mass of Ca(OH)₂ added - 36.0 g
number of moles of Ca(OH)₂ - 36.0 g / 74.1 g/mol = 0.486 mol
we know the concentration of the solution prepared and the number of moles of Ca(OH)₂ added, substituting these values in the above equation, we can find the volume of the solution
C = n/v
0.530 mol/L = 0.486 mol / V
V = 0.917 L
answer is 0.917 L
The epicenter was located somewhere on a circle centered at Recording station X, with a radius of 250 km.<span>
</span>
Answer:
The partial pressure of NO2 = 0.152 atm
Explanation:
Step 1: Data given
Pressure NO2 = 0.500 atm
Total pressure at equilibrium = 0.674 atm
Step 2: The balanced equation
2NO2(g) → 2NO(g) + O2(g)
Step 3: The initial pressure
pNO2 = 0.500 atm
pNO = 0 atm
p O2 = 0 atm
Step 4: Calculate pressure at the equilibrium
For 2 moles NO2 we'll have 2 moles NO and 1 mol O2
pNO2 = 0.500 - 2x atm
pNO =2x atm
pO2 = xatm
The total pressure = p(total) = p(NO2) + p(NO) + p(O2)
p(total) = (0.500 - 2x) + 2x + x= 0.674 atm
0.500 + x = 0.674 atm
x = 0.174 atm
This means the partial pressure of NO2 = 0.500 - 2*0.174 = 0.152 atm
Answer: The rate of disappearance of
is 
Explanation:
The given chemical reaction is:

The rate of the reaction for disappearance of
is given as:
![\text{Rate of disappearance of }NO_2=-\frac{\Delta [NO_2]}{\Delta t}](https://tex.z-dn.net/?f=%5Ctext%7BRate%20of%20disappearance%20of%20%7DNO_2%3D-%5Cfrac%7B%5CDelta%20%5BNO_2%5D%7D%7B%5CDelta%20t%7D)
Or,

where,
= final concentration of
= 0.00650 M
= initial concentration of
= 0.0100 M
= final time = 100 minutes
= initial time = 0 minutes
Putting values in above equation, we get:

Hence, the rate of disappearance of
is 