Weight of the carriage 
Normal force 
Frictional force 
Acceleration 
Explanation:
We have to look into the FBD of the carriage.
Horizontal forces and Vertical forces separately.
To calculate Weight we know that both the mass of the baby and the carriage will be added.
- So Weight(W)

To calculate normal force we have to look upon the vertical component of forces, as Normal force is acting vertically.We have weight which is a downward force along with
, force of
acting vertically downward.Both are downward and Normal is upward so Normal force 
- Normal force (N)

- Frictional force (f)

To calculate acceleration we will use Newtons second law.
That is Force is product of mass and acceleration.
We can see in the diagram that
and
component of forces.
So Fnet = Fy(Horizontal) - f(friction) 
- Acceleration (a) =

So we have the weight of the carriage, normal force,frictional force and acceleration.
Magnet moving left to right
The magnitude of the average force that the ball exerts against his glove is 600 N

<h3>Further explanation</h3>
Newton's second law of motion states that the resultant force applied to an object is directly proportional to the mass and acceleration of the object.

F = Force ( Newton )
m = Object's Mass ( kg )
a = Acceleration ( m )
Let us now tackle the problem !

<u>Given:</u>
mass of ball = m = 0.15 kg
initial speed of ball = u = 40 m/s
final speed of ball = v = 0 m/s
distance = d = 20 cm = 0.2 m
<u>Asked:</u>
average force = F = ?
<u>Solution:</u>
<em>We will use </em><em>Newton's Law of Motion</em><em> to solve this problem as follows:</em>







<h3>Learn more</h3>

<h3>Answer details</h3>
Grade: High School
Subject: Physics
Chapter: Dynamics
20W = 20 J/s
Energy expended during climbing stairs = 50 W of energy/stair = 50J/stair
For 20 stairs, Total energy = 50x20 = 1000 J
This can light bulbs for, T= 1000J/20 J/s =50 seconds
Refer to the diagram shown below.
i = the current in the circuit., A
R₁ = the internal resistance of the battery, Ω
R₂ = the resistance of the 60 W load, Ω
Because the resistance across the battery is 8.5 V instead of 9.0 V, therefore
(R₁ )(i A) = 9 - 8.5 = (0.5 V)
R₁*i = 0.5 (10
Also,
R₂*i = 9.5 (2)
Because the power dissipated by R₂ is 60 W, therefore
i²R₂ = 60
From (2), obtain
i*9.5 = 60
i = 6.3158 A
From (1), obtain
6.3158*R₁ = 0.5
R₁ = 0.5/6.3158 = 0.0792 Ω = 0.08 Ω (nearest hundredth)
Answer: 0.08 Ω