Answer:
So the acceleration of the child will be 
Explanation:
We have given angular speed of the child 
Radius r = 4.65 m
Angular acceleration 
We know that linear velocity is given by 
We know that radial acceleration is given by 
Tangential acceleration is given by

So total acceleration will be 
Answer:
4.8967m
Explanation:
Given the following data;
M = 0.2kg
∆p = 0.58kgm/s
S(i) = 2.25m
Ratio h/w = 12/75
Firstly, we use conservation of momentum to find the velocity
Therefore, ∆p = MV
0.58kgm/s = 0.2V
V = 0.58/2
V = 2.9m/s
Then, we can use the conservation of energy to solve for maximum height the car can go
E(i) = E(f)
1/2mV² = mgh
Mass cancels out
1/2V² = gh
h = 1/2V²/g = V²/2g
h = (2.9)²/2(9.8)
h = 8.41/19.6 = 0.429m
Since we have gotten the heigh, the next thing is to solve for actual slant of the ramp and initial displacement using similar triangles.
h/w = 0.429/x
X = 0.429×75/12
X = 2.6815
Therefore, by Pythagoreans rule
S(ramp) = √2.68125²+0.429²
S(ramp) = 2.64671
Finally, S(t) = S(ramp) + S(i)
= 2.64671+2.25
= 4.8967m
Answer:
a = the lowest critical speed of the shaft 882.81 rad/s
b = new diameter 0.05m or 50mm
c = critical speed 1765.62rad/s
Explanation:
see the attached file
Answer:
option B.
Explanation:
The correct answer is option B.
The phenomenon of the curtains to pull out of the window can be explained using Bernoulli's equation.
According to Bernoulli's Principle when the speed of the moving fluid increases the pressure within the fluid decrease.
When wind flows in the outside window the pressure outside window decreases and pressure inside the room is more so, the curtain moves outside because of low pressure.