Answer:
99.63 kg
Explanation:
From the force diagram
N = normal force on the worker from the surface of the roof
f = static frictional force = 560 N
θ = angle of the slope = 35
m = mass of the worker
W = weight of the worker = mg
W Cosθ = Component of the weight of worker perpendicular to the surface of roof
W Sinθ = Component of the weight of worker parallel to the surface of roof
From the force diagram, for the worker not to slip, force equation must be
W Sinθ = f
mg Sinθ = f
m (9.8) Sin35 = 560
m = 99.63 kg
Answer: Sean is standing still, and Rhea is running toward Sean while kicking the ball
Explanation: Your welcome :)
Answer:
66.98 db
Explanation:
We know that

L_T= Total signal level in db
n= number of sources
L_S= signal level from signal source.

= 66.98 db
Answer:
Explanation:
moment of inertia of each blade which is similar to rod rotating about its one end
= 1/3 ml²
moment of inertia of 3 blades = ml²
= 5500 x 46²
I = 11638 x 10³ kg m²
angular velocity = 2πn where n is rotation per second
n = 11 / 60
angular velocity = 2π x 11/60
= 1.1513 rad /s
angular momentum
= moment of inertia x angular velocity
= 11638 x 10³ x 1.1513
= 13399 x 10³ kg m² per second.
We can answer this problem using Ampere’s Law:
<span>Bh = μoNI </span>
Where:
B = Magnetic Field
h = coil length
<span>μo = permeability =4π*10^-7 T·m/A </span>
N = number of turns
I = current
It is given that B=0.0015T, I=1.0A, h=10 cm =
0.1m<span>
Use Ampere's law to find # turns:
Which can be rewritten as:
<span>N = Bh/μoI </span>
N = (0.0015)(0.1)/(4π*10^-7)(1.0)
N = 119.4
</span>
<span>Answer:
119.4 turns</span>