answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Brut [27]
2 years ago
6

At a certain location, a gravitational force with a magnitude of 350 newtons acts on a 70.-kilogram astronaut. What is the magni

tude of the gravitational field strength at this location? (1) 0.20 kg/N (2) 9.8 m/s2 (3) 5.0 N/kg (4) 25 000 Nkg
Physics
1 answer:
creativ13 [48]2 years ago
6 0

Answer:

3. 5.0N/kg

Explanation:

Gravitational field strength = gravitational force/mass of astronaut = 350N/70kg = 5.0N/kg

You might be interested in
A ball weighing 1 lb is attached to a string 2 feet long and is whirled in a vertical circle at a constant speed of 10 ft/sec.
fredd [130]

Explanation:

It is given that,

Mass of the ball, m = 1 lb

Length of the string, l = r = 2 ft

Speed of motion, v = 10 ft/s

(a) The net tension in the string when the ball is at the top of the circle is given by :

F=\dfrac{mv^2}{r}-mg

F=m(\dfrac{v^2}{r}-g)

F=1\ lb\times (\dfrac{(10\ ft/s)^2}{2}-1\ lb\times 32\ ft/s^2)

F = 18 N

(b) The net tension in the string when the ball is at the bottom of the circle is given by :

F=\dfrac{mv^2}{r}+mg

F=m(\dfrac{v^2}{r}+g)

F=1\ lb\times (\dfrac{(10\ ft/s)^2}{2}+1\ lb\times 32\ ft/s^2)

F = 82 N

(c) Let h is the height where the ball at certain time from the top. So,

T=mg(\dfrac{r-h}{r})+\dfrac{mv^2}{r}

T=\dfrac{m}{r}(g(r-h)+v^2)

Since, v^2=u^2-2gh

T=\dfrac{m}{r}(u^2-3gh+gr)

Hence, this is the required solution.

6 0
2 years ago
When the Glen Canyon hydroelectric power plant in Arizona is running at capacity, 690 m3 of water flows through the dam each sec
bixtya [17]

Answer:

1340.2MW

Explanation:

Hi!

To solve this problem follow the steps below!

1 finds the maximum maximum power, using the hydraulic power equation which is the product of the flow rate by height by the specific weight of fluid

W=αhQ

α=specific weight for water =9.81KN/m^3

h=height=220m

Q=flow=690m^3/s

W=(690)(220)(9.81)=1489158Kw=1489.16MW

2. Taking into account that the generator has a 90% efficiency, Find the real power by multiplying the ideal power by the efficiency of the electric generator

Wr=(0.9)(1489.16MW)=1340.2MW

the maximum possible electric power output is 1340.2MW

3 0
2 years ago
Lilli suggests that they explore the simulation starting with varying only a single parameter in order to understand the role of
mrs_skeptik [129]

Answer:

B.

Explanation:

One of the ways to address this issue is through the options given by the statement. The concepts related to the continuity equation and the Bernoulli equation.

Through these two equations it is possible to observe the behavior of the fluid, specifically the velocity at a constant height.

By definition the equation of continuity is,

A_1V_1=A_2V_2

In the problem A_2 is 2A_1, then

A_1V_1=2A_1V_2

V_2 = \frac{V_1}{2}

<em>Here we can conclude that by means of the continuity when increasing the Area, a decrease will be obtained - in the diminished times in the area - in the speed.</em>

For the particular case of Bernoulli we have to

P_1 + \frac{1}{2}\rho V_1^2 = P_2 +\frac{1}{2}\rho V_2^2

P_2-P_1 = \frac{1}{2} \rho (V_1^2-V_2^2)

For the previous definition we can now replace,

P_2-P_1 = \frac{1}{2} \rho (V_1^2-(\frac{V_1}{2})^2)

\Delta P =  \frac{3}{8} \rho V_1^2

<em>Expressed from Bernoulli's equation we can identify that the greater the change that exists in pressure, fluid velocity will tend to decrease</em>

The correct answer is B: "If we increase A2 then by the continuity equation the speed of the fluid should decrease. Bernoulli's equation then shows that if the velocity of the fluid decreases (at constant height conditions) then the pressure of the fluid should increase"

4 0
2 years ago
A container, partially filled with water, is resting on a scale that measures its weight. Suppose you place a 200 g piece of woo
nikdorinn [45]

The scale reading increases by the weight of 200 g of mass. (If you're on Earth, that's about 2 Newtons.)

8 0
2 years ago
Two cars start 200 m apart and drive toward each other at a steady 10 m/s. On the front of one of them, an energetic grasshopper
vladimir1956 [14]

Answer:

Total distance does the grasshopper travel before the cars hit is 150 m

Explanation:

Each car moves x=100 m before they collide. Both the cars moving in constant velocity. time taken t by each car is

t=\frac{x}{v}

where x  is the distance traveled with velocity v

t=\frac{100}{10}\\t=10 sec

The insect is moving through this time period with a constant velocity of 15 m/s

The distance traveled by grasshopper  is

distance=V_{gh} \times t\\distance=15 \times 10\\distance=150 m

7 0
2 years ago
Other questions:
  • Select all that apply. Greenhouse gases _____. absorb solar energy absorb carbon dioxide release carbon dioxide are released dur
    7·1 answer
  • In a Venn diagram, the separate circles contain characteristics unique to each item being compared and the intersection contains
    8·2 answers
  • A pump lifts water from a lake to a large tank 20 m above the lake. How much work against gravity does the pump do as it transfe
    11·2 answers
  • You start with spring that's already been stretched an unknown amount from equilibrium. After stretching it an additional 2.0 cm
    6·1 answer
  • What mass needs to be attached to a spring with a force constant of 7N/m in order to make a simple harmonic oscillator oscillate
    9·1 answer
  • What makes the subject of star formation so difficult and complex? Star formation is too expensive to study in detail. Stars liv
    12·1 answer
  • Suppose Mitch Marner (mass=80kg) and Zdano Chara (mass=116kg) collide head-on at the blue line when Marner is skating 10m/s and
    8·1 answer
  • Ariel dropped a golf ball from her second story window. The ball starts from rest and hits the sidewalk 3.5 s later with a veloc
    14·1 answer
  • A sock with a mass of 0.03 kg is stuck to the inside of a clothes dryer spins
    9·1 answer
  • .. Eugene wants to ride his bike at least 40 miles today. The first hour was
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!