Answer:
there will be a heat flow from water to the metal ball...
<span>E = h x f </span>
<span>. . . then : </span>
<span>f = E / h </span>
<span>f = 4,41•10^-19 / 6,62•10^-34 </span>
<span>f = 6,66•10^14 Hz (s^-1) </span>
<span>b/ What is the wavelength of this light ? </span>
<span>- - - - - - - - - - - - - - - - - - - - - - - - - - - - </span>
<span>λ = c / f </span>
<span>λ = 3•10^8 / 6,66•10^14 </span>
<span>λ = 4,50•10^-7 m </span>
<span>Bit level for a CCD (Charged coupled device) with a greatest possible pixel value of 4095:The relationship between the bit level and pixel value is given as:pixel value = 2^bit level.Most charged coupled devices (CCDs) have 8-bit, 16-bit, 32-bit levels.Using simple mathematics, we can see that 2^12 = 4096.Since the maximum number of pixels is 4095, the bit level is 12., i.e. the CCD has 12-bit level.</span>
Answer:
(1) An object that’s negatively charged has more electrons than protons.
(2) An object that’s positively charged has fewer electrons than protons.
(3) An object that’s not charged has the same number of electrons than protons.
Explanation :
Objects have three subatomic particles that are Electrons, protons, and neutrons.
Protons and neutrons are found in the nucleus and electrons rotate or move outside the nucleus. Naturally, protons are positively charged, neutrons have no charge, and electrons are negatively charged.
Therefore, an object that is negatively charged has more electrons than protons. An object that is not charged has the same number of electrons than protons. An object that is positively charged has fewer electrons than protons.
Answer:
This is because below 4°c, water unlike other materials becomes less dense when it's temperature is further lowered.
Explanation:
Due to the unusual nature of water; at about 4°c, the behavior of the density of water in relation to its temperature reverses. This means that water becomes less dense as it becomes colder below 4°c. The colder parts therefore floats to the top of the water body while the warmer part sinks allowing the top to freeze and the remaining body below to remain in its liquid state.
The freezing of the top of the lake alone protects the remaining depth of water from freezing by acting as an insulator and preventing further heat loss from the water to the ambient space. If this had not been the case, and water froze all through, marine lives will freeze to death and it will be more difficult to melt the ice come the next summer.
This behavior is due to the hydrogen bonding of the water molecules.