<span>65 = number of different arrangements of 2 and 3 card pages such that the total number of card slots equals 18. 416,154,290,872,320,000 = number of different ways of arranging 18 cards on the above 65 different arrangements of page sizes. ===== This is a rather badly worded question in that some assumptions aren't mentioned. The assumptions being: 1. The card's are not interchangeable. So number of possible permutations of the 18 cards is 18!. 2. That all of the pages must be filled. Since the least common multiple of 2 and 3 is 6, that means that 2 pages of 3 cards can only be interchanged with 3 pages of 2 cards. So with that said, we have the following configurations. 6x3 card pages. Only 1 possible configuration. 4x3 cards and 3x2 cards. These pages can be arranged in 7!/4!3! = 35 different ways. 2x3 cards and 6x2 cards. These pages can be arranged in 8!/2!6! = 28 ways 9x2 card pages. These can only be arranged in 1 way. So the total number of possible pages and the orders in which that they can be arranged is 1+35+28+1 = 65 possible combinations. Now for each of those 65 possible ways of placing 2 and 3 card pages such that the total number of card spaces is 18 has to be multiplied by the number of possible ways to arrange 18 cards which is 18! = 6402373705728000. So the total amount of arranging those cards is 6402373705728000 * 65 = 416,154,290,872,320,000</span>
The answer would be C) As the number of hours of studying increases, test scores increase because the scatterplot has a cluster that increases from left to right.
Any questions? Ask me in the comments bellow.
Hope this helps. :)
<h2>
Plane's speed without wind i s 117.68 mph</h2>
Step-by-step explanation:
We have speed of plane without wind is x.
Distance to brothers place = 200 miles.
A headwind of 20 mph slowed down the plane's speed on the first leg of the trip
Speed to brothers place = x - 20
We have
Distance = Speed x Time

A tailwind of 20 mph sped up the plane on the return trip
Speed of return trip = x + 20
We have
Distance = Speed x Time

The entire trip took 3.5 hours.
That is

Plane's speed without wind i s 117.68 mph
Answer:

Now we can find the limits in order to determine outliers like this:


So for this case the left boundary would be 3, if a value is lower than 3 we consider this observation as an outlier
b. 3
Step-by-step explanation:
For this case we have the following summary:
represent the minimum value
represent the first quartile
represent the median
represent the third quartil
represent the maximum
If we use the 1.5 IQR we need to find first the interquartile range defined as:

Now we can find the limits in order to determine outliers like this:


So for this case the left boundary would be 3, if a value is lower than 3 we consider this observation as an outlier
b. 3