Answer:
θ=108rad
t =10.29seconds
α=-8.17rad/s²
Explanation:
Given that
At t=0, Wo=24rad/sec
Constant angular acceleration =30rad/s²
At t=2, θ=432rad as it try to stop because the circuit break
Angular motion
W=Wo+αt
θ=Wot+1/2αt²
W²=Wo²+2αθ
We need to find θ between 0sec to 2sec when the wheel stop
a. θ=Wot+1/2αt²
θ=24×2+1/2×30×2²
θ=48+60
θ=108rad.
b. W=Wo+αt
W=24+30×2
W=84rad/s
This is the final angular velocity which is the initial angular velocity when the wheel starts to decelerate.
Wo=84rad/sec
W=0rad/s, because the wheel stop at θ=432rad
Using W²=Wo²+2αθ
0²=84²+2×α×432
-84²=864α
α=-8.17rad/s²
It is negative because it is decelerating
Now, time taken for the wheel to stop
W=Wo+αt
0=84-8.17t
-84=-8.17t
Then t =10.29seconds.
a. θ=108rad
b. t =10.29seconds
c. α=-8.17rad/s²
As Saba was wearing high heels they are long from the bottom so they sank however Sana was wearing snow boots which means they were flat and so she didn’t sink.
Answer:3.87*10^-4
Explanation:
What is the decrease in mass, delta mass Xe , of the xenon nucleus as a result of this deca
We have been given the wavelength of the gamma ray, find the frequency using c = freq*wavelength.
C=f*lambda
3*10^8=f*3.44*10^-12
F=0.87*10^20 hz
Then with the frequency, find the energy emitted using equation
E=hf E = freq*Plank's constant
E=.87*10^20*6.62*10^-34
E=575.94*10^(-16)
With this energy, convert into MeV from joules.
With the energy in MeV, use E=mc^2 using c^2 = 931.5 MeV/u.
Plugging and computing all necessary numbers gives you
3.87*10^-4 u.
Answer:
d) 12 V
Explanation:
Due to the symmetry of the problem, the potential (relative to infinity) at the midpoint of the square, is the same for all charges, provided they be of the same magnitude and sign, and be located at one of the corners of the square.
We can apply the superposition principle (as the potential is linear with the charge) and calculating the total potential due to the 4 charges, just adding the potential due to any of them:
V = V(Q₁) + V(Q₂) +V(Q₃) + V(Q₄) = 4* 3.0 V = 12. 0 V