answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Anit [1.1K]
2 years ago
8

This is really urgent

Physics
1 answer:
hodyreva [135]2 years ago
7 0

20) When light passes from air to glass and then to air

21) When a light ray enters a medium with higher optical density, it bends towards the normal

22) Index of refraction describes the optical density

23) Light travels faster in the material with index 1.1

24) Glass refracts light more than water

25) Index of refraction is n=\frac{c}{v}

26) Critical angle: [tex]sin \theta_c = \frac{n_2}{n_1}[/tex]

27) Critical angle is larger for the glass-water interface

Explanation:

20)

It is possible to slow down light and then speed it up again by making light passing from a medium with low optical density (for example, air) into a medium with higher optical density (for example, glass), and then make the light passing again from glass to air.

This phenomenon is known as refraction: when a light wave crosses the interface between two different mediums, it changes speed (and also direction). The speed decreases if the light passes from a medium at lower optical density to a medium with higher optical density, and viceversa.

21)

The change in direction of light when it passes through the boundary between two mediums is given by Snell's law:

n_1 sin \theta_1 = n_2 sin \theta_2

with

n_1, n_2 are the refractive index of 1st and 2nd medium

\theta_1, \theta_2 are the angle of incidence and refraction (the angle between the incident ray (or refracted ray) and the normal to the boundary)

The larger the optical density of the medium, the larger the value of n, the smaller the angle: so, when a light ray enters a medium with higher optical density, it bends towards the normal.

22)

The index of refraction describes the optical density of a medium. More in detail:

  • A high index of refraction means that the material has a high optical density, which means that light travels more slowly into that medium
  • A low index of refraction means that the material has a low optical density, which means that light travels faster into that medium

Be careful that optical density is a completely different property from density.

23)

As we said in part 22), the index of refraction describes the optical density of a medium.

In this case, we have:

  • A material with refractive index of 1.1
  • A material with refractive index of 2.2

As we said previously, light travels faster in materials with a lower refractive index: therefore in this case, light travels more quickly in material 1, which has a refractive index of only 1.1, than material 2, whose index of refraction is much higher (2.2).

24)

Rewriting Snell's law,

sin \theta_2 = \frac{n_1}{n_2}sin \theta_1 (1)

For light moving from air to water:

n_1 \sim 1.00 is the index of refraction of air

n_2 = 1.33 is the index of refraction ofwater

In this case, \frac{n_1}{n_2}=\frac{1.00}{1.33}=0.75

For light moving from air to glass,

n_2 = 1.51 is the index of refraction of glass

And so

\frac{n_1}{n_2}=\frac{1.00}{1.51}=0.66

From eq.(1), we see that the angle of refraction \theta_2 is smaller in the 2nd case: so glass refracts light more than water, because of its higher index of refraction.

25)

The index of refraction of a material is

n=\frac{c}{v}

c is the speed of light in a vacuum

v is the speed of light in the material

So, the index of refraction is inversely proportional to the speed of light in the material:

  • The higher the index of refraction, the slower the light
  • The lower the index of refraction, the faster the light

26)

From Snell's law,

sin \theta_2 = \frac{n_1}{n_2}sin \theta_1

We notice that when light moves from a medium with higher refractive index to a medium with lower refractive index, n_1 > n_2, so \frac{n_1}{n_2}>1, and since sin \theta_2 cannot be larger than 1, there exists a maximum value of the angle of incidence \theta_c (called critical angle) above which refraction no longer occurs: in this case, the incident light ray is completely reflected into the original medium 1, and this phenomenon is called total internal reflection.

The value of the critical angle is given by

sin \theta_c = \frac{n_2}{n_1}

For angles of incidence above this value, total internal reflection occurs.

27)

Using:

sin \theta_c = \frac{n_2}{n_1}

For the interface glass-air,

n_1 \sim 1.51\\n_2 = 1.00

The critical angle is

\theta_c = sin^{-1}(\frac{n_2}{n_1})=sin^{-1}(\frac{1.00}{1.51})=41.5^{\circ}

For the interface glass-water,

n_1 \sim 1.51\\n_2 = 1.33

The critical angle is

\theta_c = sin^{-1}(\frac{n_2}{n_1})=sin^{-1}(\frac{1.33}{1.51})=61.7^{\circ}

So, the critical angle is larger for the glass-water interface.

Learn more about refraction:

brainly.com/question/3183125

brainly.com/question/12370040

#LearnwithBrainly

You might be interested in
An athlete stretches a spring an extra 40.0 cm beyond its initial length. how much energy has he transferred to the spring, if t
marissa [1.9K]
The energy transferred to the spring is given by:
U= \frac{1}{2}kx^2
where 
k is the spring constant
x is the elongation of the spring with respect its initial length

Let's convert the data into the SI units:
k=52.9 N/cm = 5290 N/m
x=40.0 cm=0.4 m

so now we can use these data inside the equation ,to find the energy transferred to the spring:
U= \frac{1}{2}kx^2= \frac{1}{2}(5290 N/m)(0.4m)^2=423.2 J
4 0
2 years ago
A spring has a spring constant of 48 N/m. The end of the spring hangs 8 m above the ground. How much weight can be placed on the
Setler79 [48]
The answer is 96 N .....................................
7 0
2 years ago
Read 2 more answers
Takumi works in his yard for 45 minutes each Saturday. He works in the morning, and he wears sunscreen and a hat each time he wo
MrRa [10]

Explanation :

Takumi wears sunscreen and a hat each time he works in the yard. This is to protect himself with the strong radiation coming from the sun. UV rays that are coming from the sun are the main cause of skin cancer.

Stochastic effects are the effects that are caused by chance. Cancer is one of the main stochastic effects.

So, the correct option is (b) "the severity of stochastic effects, such as cancer".

7 0
3 years ago
Read 2 more answers
calculate the workdone to stretch an elastic string by 40cm if a force of 10N produces an extension of 4cm in it
Lera25 [3.4K]
The force of F=10 N produces an extension of
x=4 cm=0.04 m
on the string, so the spring constant is equal to
k= \frac{F}{x}= \frac{10 N}{0.04 m}=250 N/m

Then the string is stretched by \Delta x=40 cm=0.40 m. The work done to stretch the string by this distance is equal to the variation of elastic potential energy of the string with respect to its equilibrium position:
W= \Delta U= \frac{1}{2}k(\Delta x)^2  = \frac{1}{2}(250 N/m)(0.40 m)^2=20 J
5 0
2 years ago
A jetboat is drifting with a speed of 5.0\,\dfrac{\text m}{\text s}5.0 s m ​ 5, point, 0, start fraction, start text, m, end tex
love history [14]

The question is incomplete. Here is the entire question.

A jetboat is drifting with a speed of 5.0m/s when the driver turns on the motor. The motor runs for 6.0s causing a constant leftward acceleration of magnitude 4.0m/s². What is the displacement of the boat over the 6.0 seconds time interval?

Answer: Δx = - 42m

Explanation: The jetboat is moving with an acceleration during the time interval, so it is a <u>linear</u> <u>motion</u> <u>with</u> <u>constant</u> <u>acceleration</u>.

For this "type" of motion, displacement (Δx) can be determined by:

\Delta x = v_{i}.t + \frac{a}{2}.t^{2}

v_{i} is the initial velocity

a is acceleration and can be positive or negative, according to the referential.

For Referential, let's assume rightward is positive.

Calculating displacement:

\Delta x = 5(6) - \frac{4}{2}.6^{2}

\Delta x = 30 - 2.36

\Delta x = - 42

Displacement of the boat for t=6.0s interval is \Delta x = - 42m, i.e., 42 m to the left.

8 0
2 years ago
Other questions:
  • In a harbor, you can see sea waves traveling around the edges of small stationary boats. Why does this happen?
    7·1 answer
  • You hold a piece of wood in one hand and a piece of iron in the other. both pieces have the same volume, and you hold them fully
    11·1 answer
  • Identify the arrows that show input force
    14·2 answers
  • An object moving due to gravity can be described by the motion equation y=y0+v0t−12gt2, where t is time, y is the height at tha
    7·1 answer
  • A 45.0-kg person steps on a scale in an elevator. The scale reads 460 n. What is the magnitude of the acceleration of the elevat
    11·1 answer
  • You wad up a piece of paper and throw it into the wastebasket. How far will
    13·2 answers
  • A4 40 kg girl skates at 3.5 m/s one ice toward her 65 kg friend who is standing still, with open arms. As they collide and hold
    8·1 answer
  • The Orion nebula is one of the brightest diffuse nebulae in the sky (look for it in the winter, just below the three bright star
    7·1 answer
  • Global Precipitation Measurement (GPM) is a tool scientists use to forecast weather. Which statements describe GPM? Select three
    7·1 answer
  • Adam takes a bus on a school field trip. The bus route is split into the five legs listed in the table. Find the average velocit
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!