The answer is B.
This is because since f + e = c,
then a² + b² = c(f + e)
a² + b² = c(c)
a² + b² = c²
This is the correct answer
Answer:

Step-by-step explanation:
The given system is:


Since I prefer to use smaller numbers I'm going to divide both sides of the first equation by 3 and both sides of the equation equation by 6.
This gives me the system:


We could solve the first equation for
and replace the second
with that.
Let's do that.

Subtract
on both sides:

So we are replacing the second
in the second equation with
which gives us:





Now recall the first equation we arranged so that
was the subject. I'm referring to
.
We can now find
given that
using the equation
.
Let's do that.
with
:



So the solution is (8,-1).
We can check this point by plugging it into both equations.
If both equations render true for that point, then we have verify the solution.
Let's try it.
with
:


is a true equation so the "solution" looks promising still.
with
:


is also true so the solution has been verified since both equations render true for that point.
Answer:
17, 18, 19, 20, 21
Step-by-step explanation:
Answer:

Step-by-step explanation:
given is the Differential equation in I order linear as

Take Laplace on both sides
![L(y') +4L(y) = 48L(t)\\sY(s)-y(0) +4Y(s) = 48 *\frac{1}{s^2} \\Y(s) [s+4]=\frac{48}{s^2}+9\\Y(s) = \frac{1}{s^2(s+4)}+\frac{9}{s+4}](https://tex.z-dn.net/?f=L%28y%27%29%20%2B4L%28y%29%20%3D%2048L%28t%29%5C%5CsY%28s%29-y%280%29%20%2B4Y%28s%29%20%3D%2048%20%2A%5Cfrac%7B1%7D%7Bs%5E2%7D%20%5C%5CY%28s%29%20%5Bs%2B4%5D%3D%5Cfrac%7B48%7D%7Bs%5E2%7D%2B9%5C%5CY%28s%29%20%3D%20%5Cfrac%7B1%7D%7Bs%5E2%28s%2B4%29%7D%2B%5Cfrac%7B9%7D%7Bs%2B4%7D)
Now if we take inverse we get y(t) the solution
Thus the algebraic equation would be