It’s rational, for a number to be rational you have to be able to write it as a fraction and you can write 0.515115111511115111115... as a fraction.
100,000,000+10,000,000+9,000,000+3
Answer:
(1). y = x ~ Exp (1/3).
(2). Check attachment.
(3). EY = 3(1 - e^-2).
(4). Var[y] = 3(1 - e^-2) (1 -3 (1 - e^-2)) - 36e^-2.
Step-by-step explanation:
Kindly check the attachment to aid in understanding the solution to the question.
So, from the question, we given the following parameters or information or data;
(A). The probability in which attempt to establish a video call via some social media app may fail with = 0.1.
(B). " If connection is established and if no connection failure occurs thereafter, then the duration of a typical video call in minutes is an exponential random variable X with E[X] = 3. "
(C). "due to an unfortunate bug in the app all calls are disconnected after 6 minutes. Let random variable Y denote the overall call duration (i.e., Y = 0 in case of failure to connect, Y = 6 when a call gets disconnected due to the bug, and Y = X otherwise.)."
(1). Hence, for FY(y) = y = x ~ Exp (1/3) for the condition that zero is equal to y = x < 6.
(2). Check attachment.
(3). EY = 3(1 - e^-2).
(4). Var[y] = 3(1 - e^-2) (1 -3 (1 - e^-2)) - 36e^-2.
The condition to follow in order to solve this question is that y = 0 if x ≤ 0, y = x if 0 ≤ x ≤ 6 and y = 6 if x ≥ 6.
Answer:
The center/ mean will almost be equal, and the variability of simulation B will be higher than the variability of simulation A.
Step-by-step explanation:
Solution
Normally, a distribution sample is mostly affected by sample size.
As a rule, sampling error decreases by half by increasing the sample size four times.
In this case, B sample is 2 times higher the A sample size.
Now, the Mean sampling error is affected and is not higher for A.
But it's sample is huge for this, Thus, they are almost equal
Variability of simulation decreases with increase in number of trials. A has less variability.
With increase number of trials, variability of simulation decreases, so A has less variability.