answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
pashok25 [27]
2 years ago
15

Determine if 0.515115111511115111115... is rational or irrational and give

Mathematics
1 answer:
GREYUIT [131]2 years ago
7 0
It’s rational, for a number to be rational you have to be able to write it as a fraction and you can write 0.515115111511115111115... as a fraction.
You might be interested in
When a certain basketball player takes his first shot in a game he succeeds with probability 1/2. If he misses his first shot, h
Gnom [1K]

Answer:

we are given

basketball player Chauncey Billups of the Detroit Pistons makes free throw shots 88% of the time

so, probability of making shot is

=88%

so, p=0.88

To find the probability of missing first shot and making the second shot

so, we can use formula

probability = p(1-p)

now, we can plug values

we get

So, the probability that he misses his first shot and makes the second is 0.1056........Answer

Step-by-step explanation:

3 0
2 years ago
Two number cubes are rolled to determine how a token moves on a game board. The sides of
ahrayia [7]

Answer:

D. The mathematical expectation of Option A is 1. The mathematical expectation of Option B is 1.5. Option B offers a greater likelihood of advancing to the finish line.

Step-by-step explanation:

The result of a product is odd only when the two numbers are odds.

There are 6*6 = 36 possible outcomes when two dice are rolled. Only 9 of them are a combination of two odd numbers: {1, 1} {1, 3} {1, 5} {3, 1} {3, 3} {3, 5} {5, 1} {5, 3} {5, 5}. Then 36 - 9 = 27 outcomes are even.

P(even) = 27/36 = 0.75

Option A) Mathematical expectation: 0.75*4 + 0.25*(-8) = 1

Option B) Mathematical expectation: 0.75*5 + 0.25*(-9) = 1.5

8 0
2 years ago
The lifespans of lions in a particular zoo are normally distributed. The average lion lives 12.512.512, point, 5 years; the stan
zaharov [31]

This question was not written properly

Complete Question

The lifespans of lions in a particular zoo are normally distributed. The average lion lives 12.5 years; the standard deviation is 2.4 years. Use the empirical rule (68-95-99.7\%)(68−95−99.7%) to estimate the probability of a lion living between 5.3 to 10. 1 years.

Answer:

Thehe probability of a lion living between 5.3 to 10. 1 years is 0.1585

Step-by-step explanation:

The empirical rule formula states that:

1) 68% of data falls within 1 standard deviation from the mean - that means between μ - σ and μ + σ.

2) 95% of data falls within 2 standard deviations from the mean - between μ – 2σ and μ + 2σ.

3) 99.7% of data falls within 3 standard deviations from the mean - between μ - 3σ and μ + 3σ.

Mean is given in the question as: 12.5

Standard deviation : 2.4 years

We start by applying the first rule

1) 68% of data falls within 1 standard deviation from the mean - that means between μ - σ and μ + σ.

μ - σ

12.5 -2.4

= 10.1

We apply the second rule

2) 95% of data falls within 2 standard deviations from the mean - between μ – 2σ and μ + 2σ.

μ – 2σ

12.5 - 2 × 2.4

12.5 - 4.8

= 7.7

We apply the third rule

3)99.7% of data falls within 3 standard deviations from the mean - between μ - 3σ and μ + 3σ.

μ - 3σ

= 12.5 - 3(2.4)

= 12.5 - 7.2

= 5.3

From the above calculation , we can see that

5.3 years corresponds to one side of 99.7%

Hence,

100 - 99.7%/2 = 0.3%/2

= 0.15%

And 10.1 years corresponds to one side of 68%

Hence

100 - 68%/2 = 32%/2 = 16%

So,the percentage of a lion living between 5.3 to 10. 1 years is calculated as 16% - 0.15%

= 15.85%

Therefore, the probability of a lion living between 5.3 to 10. 1 years

is converted to decimal =

= 15.85/ 100

= 0.1585

8 0
2 years ago
There are four activities on the critical path, and they have standard deviations of 1, 2, 4, and 2. what is the probability tha
Anit [1.1K]

Standard deviations of the four activities of the critical path are 1,2,4,2.

Standard deviation of this critical path = Sum of square root of variance of this corresponding critical path

Standard deviation of critical path =\sqrt{1^2+2^2+4^2+2^2}

=\sqrt{1+4+16+4}

=\sqrt{25}

=5

Now we need to find the probability that the project will completed in 38 weeks given that its expected completion time is 40 weeks.

That is, we need to find P(X<38) :

z=\frac{38-40}{5}= \frac{-2}{5}=-0.4

P(X

Probability =0.5-0.16=0.34

Thus the probability that the project will be completed in 38 weeks is 0.34.

8 0
2 years ago
Read 2 more answers
Imaginá que tenés 125 dados cúbicos del mismo tamaño ¿Cuantos dados de altura tiene el cubo de mayor tamaño que podés armar apil
kumpel [21]

Answer:

(i) Debemos apilar 5 dados para construir el cubo de mayor tamaño.

(ii) Se necesita 121 dados cuadrados para formar el cuadrado con la mayor cantidad de dados posibles, quedando 4 dados sobrantes.

Step-by-step explanation:

(i) Sabemos por la Geometría Euclídea del Espacio que un cubo es un sólido regular con 6 caras cuadradas y longitudes iguales. Cada dado tiene un volumen de 1 dado cúbico y 125 dados dan un volumen total de 125 dados cúbicos.

El volumen de un cubo está dado por la siguiente fórmula:

V = L^{3}

Donde:

L - Longitud de la arista, medida en dados.

V - Volumen del cubo, medido en dados cúbicos.

Ahora, necesitamos despejar la longitud de la arista para calcular la altura máxima posible:

L = \sqrt[3]{V}

Dado que V = 125\,dados^{3}, encontramos que la altura del cubo de mayor tamaño sería:

L =\sqrt[3]{125\,dados^{3}}

L = 5\,dados

Debemos apilar 5 dados para construir el cubo de mayor tamaño.

(ii) El área cuadrada formada por cubos está determinada por la siguiente fórmula:

A = L^{2}

Donde:

L - Longitud de arista, medida en dados.

A - Área, medida en dados cuadrados.

Puesto que la longitud de arista se basa en un conjunto discreto, esto es, el número de dados disponibles, debemos encontrar el valor máximo de L tal que no supere 125 y de un área entera. Es decir:

L \leq 125\,dados

Si cada cubo tiene un área de 1 dado cuadrado, entonces un cuadrado conformado por 125 dados tiene un área total de 125 dados cuadrados. Entonces:

L^{2}< 125\,dados^{2}

Esto nos lleva a decir que:

L < 11.180\,dados

Entonces, la longitud máxima del cuadrado con la mayor cantidad de cubos posible es de 11 dados. El número total requerido de cubos es el cuadrado de esa cifra, es decir:

n = (11\,dados)^{2}

n = 121\,dados

Se necesita 121 dados cuadrados para formar el cuadrado con la mayor cantidad de dados posibles, quedando 4 dados sobrantes.

4 0
2 years ago
Other questions:
  • The math team wraps gifts as a way to raise money for traveling to competitions. They offer two choices: a plain wrapping or a d
    6·2 answers
  • Is the ratio of two odd functions odd
    11·1 answer
  • find a model for simple harmonic motion if the position at t = 0 is 6, the amplitude is 6 centimeters, and the period is 4 secon
    15·1 answer
  • Mr. Lin hires a moving company to help transport furniture to his new home. The bill from the moving company is $400. Mr. Lin in
    12·2 answers
  • Andrew runs 1/2 lap in 3/4 of a minute. Enter the number of laps he runs per minute.
    14·2 answers
  • The points (–2, 4) and (–2, –2) are vertices of a heptagon. Explain how to find the length of the segment formed by these endpoi
    11·2 answers
  • Which is the graph of the step function f(x)? f(x) = StartLayout Enlarged left-brace 1st row 1st column negative 1 2nd column x
    10·1 answer
  • Identify the rule of inference that is used to derive the conclusion "You do not eat tofu" from the statements "For all x, if x
    14·1 answer
  • Randomly meeting a four child family with either one or exactly 2 boy children
    10·1 answer
  • A window manufacturer claims that the seals break on only 4% of its windows. What is the probability that, in a sample of 10 win
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!