answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
iVinArrow [24]
2 years ago
6

Which of the following selections completes the following nuclear reaction?

Physics
1 answer:
Monica [59]2 years ago
3 0

Answer:

n (a neutron)

Explanation:

For a chemical element:

- The lower subscript indicates the atomic number (the number of protons)

- The upper subscript indicates the mass number (the sum of protons and neutrons in the nucleus)

In the reaction described in the problem, we see that a gamma photon hits a nucleus of Calcium-40, which has

Z = 20 (20 protons)

A = 40 (40 protons+neutrons)

Which means that the number of neutrons is n =  A - Z = 40 - 20 = 20

After the reaction, we have a nucleus of Calcium-39, which has

Z = 20 (20 protons)

A = 39 (39 protons+neutrons)

Which means that the number of neutrons is n =  A - Z = 40 - 39 = 19

So, the nucleus has lost 1 neutron, which is the particle missing in the reaction.

You might be interested in
Consider a double Atwood machine constructed as follows: A mass 4m is suspended from a string that passes over a massless pulley
kenny6666 [7]

Answer:

Hello your question is incomplete attached below is the complete question

Answer : x ( acceleration of mass 4m ) = \frac{g}{7}

The top pulley rotates because it has to keep the center of mass of the system at equilibrium

Explanation:

Given data:

mass suspended = 4 meters

mass suspended at other end = 3 meters

first we have to express the kinetic and potential energy equations

The general kinetic energy of the system can be written as

T = \frac{4m}{2} x^2  + \frac{3m}{2} (-x+y)^2 + \frac{m}{2} (-x-y)^2

T = 4mx^2 + 2my^2 -2mxy  

also the general potential energy can be expressed as

U = -4mgx-3mg(-x+y)-mg(-x-y)+constant=-2mgy +constant

The Lagrangian of the problem can now be setup as

L =4mx^2 +2my^2 -2mxy +2mgy + constant

next we will take the Euler-Lagrange equation for the generalized equations :

Euler-Lagrange  equation = 4x-y =0\\-2y+x +g = 0

solving the equations simultaneously

x ( acceleration of mass 4m ) = \frac{g}{7}

The top pulley rotates because it has to keep the center of mass of the system at equilibrium

8 0
2 years ago
Write the equivalent formulas for velocity, acceleration, and force using the relationships covered for UCM, Newton’s Laws, and
yKpoI14uk [10]

Answer:

The newton’s second law is F=ma

The Gravitational force is F=\dfrac{Gm_{1}m_{2}}{r^2}

Explanation:

Given that,

The equivalent formulas for velocity, acceleration, and force using the relationships covered for UCM, Newton’s Laws, and Gravitation.

We know that,

Velocity :

The velocity is equal to the rate of position of the object.

v=\dfrac{dx}{dt}....(I)

Acceleration :

The acceleration is equal to the rate of velocity of the object.

a=\dfrac{dv}{dt}....(II)

Newton’s second Laws

The force is equal to the change in momentum.

In mathematically,

F=\dfrac{d(p)}{dt}

Put the value of p

F=\dfrac{d(mv)}{dt}

F=m\dfrac{dv}{dt}

Put the value from equation (II)

F=ma

This is newton’s second laws.

Gravitational force :

The force is equal to the product of mass of objects and divided by square of distance.

In mathematically,

F=\dfrac{Gm_{1}m_{2}}{r^2}

Where, m₁₂ = mass of first object

m= mass of second object

r = distance between both objects

Hence, The newton’s second law is F=ma

The Gravitational force is F=\dfrac{Gm_{1}m_{2}}{r^2}

3 0
2 years ago
Two uniform, solid cylinders of radius R and total mass M are connected along their common axis by a short, light rod and rest o
sveta [45]

Explanation:

A) To prove the motion of the center of mass of the cylinders is simple harmonic:

System diagram for given situation is shown in attached Fig. 1

We can prove the motion of the center of mass of the cylinders is simple harmonic if

a_{x} = -\omega^{2}  x

where aₓ is acceleration when attached cylinders move in horizontal direction:

<h3>PROOF:</h3>

rotational inertia for cylinders  is given as:

                                  I=\frac{1}{2}MR^{2} -----(1)

Newton's second law for angular motion is:

                                             ∑τ = Iα ------(2)

For linear motion in horizontal direction it is:

                                             ∑Fₓ = Maₓ ------ (3)

By definition of torque:

                                               τ  = RF --------(4)        

Put (4) and (1) in (2)

                                       RF=\frac{1}{2}MR^{2}\alpha

                                       RF=\frac{1}{2}MR^{2}\alpha

from Fig 3 it can be seen that fs is force by which the cylinders roll without slipping as they oscillate

So above equation becomes

                                   f_{s}=\frac{1}{2}MR\alpha------ (5)

As angular acceleration is related to linear by:

                                          a= R\alpha

Eq (5) becomes

                                    f_{s}=\frac{1}{2}Ma_{x}---- (6)

aₓ shows displacement in horizontal direction

From (3)

                                              ∑Fₓ = Maₓ

Fₓ is sum of fs and restoring force that spring exerts:

                                  \sum F_{x} = f_{s} - kx ----(7)

Put (7) in (3)

                                  f_{s} - kx  = Ma_{x}[/tex] -----(8)

Using (6) in (8)

                               \frac{1}{2}Ma_{x} - kx =Ma_{x}

                                     a_{x} = \frac{2k}{3M} x --- (9)

For spring mass system

                                  a= -\omega^{2} x ----- (10)

Equating (9) and (10)

                                  \omega^{2} = \frac{2k}{3M}

\omega = \sqrt{ \frac{2k}{3M}}

then (9) becomes

                                a_{x} = - \omega^{2}x

(The minus sign says that x and  aₓ  have opposite directions as shown in fig 3)

This proves that the motion of the center of mass of the cylinders is simple harmonic.

<h3 /><h3>B) Time Period</h3>

Time period is related to angular frequency as:

                                   T=\frac{2\pi }{\omega}

                                  T = 2\pi \sqrt{\frac{3M}{2k}

                           

 

5 0
2 years ago
A 4.00-kg box sits atop a 10.0-kg box on a horizontal table. The coefficient of kinetic friction between the two boxes and betwe
natta225 [31]
First, we have to calculate the normal forces on different surfaces.The normal force on the 4.00 kg, N1 = (4)(9.8) = 39.2 N. The normal force on the 10.0 kg, N2 = (14)(9.8) = 137.2 N. Looking at the 10.0 kg block, the static forces that counteract the pulling force equals the sum of the friction from the two surfaces. Fc = N1 * 0.80 + N2 * 0.80 = 141.12 N. Since the counter force is less than the pulling force, the blocks start to move and hence, kinetic frictions are considered.


Therefore, f1 = uk * N1 = (0.60)(39.2) = 23.52 N.
4 0
2 years ago
A horizontal spring with spring constant 85 n/m extends outward from a wall just above floor level. a 3.5 kg box sliding across
Rina8888 [55]

k = spring constant of the spring = 85 N/m

m = mass of the box sliding towards the spring = 3.5 kg

v = speed of box just before colliding with the spring = ?

x = compression the spring = 6.5 cm = 6.5 cm (1 m /100 cm) = 0.065 m

the kinetic energy of box just before colliding with the spring converts into the spring energy of the spring when it is fully compressed.

Using conservation of energy

Kinetic energy of spring before collision = spring energy of spring after compression

(0.5) m v² = (0.5) k x²

m v² = k x²

inserting the values

(3.5 kg) v² = (85 N/m) (0.065 m)²

v = 0.32 m/s

8 0
2 years ago
Other questions:
  • A star is moving toward the earth with a speed of 0.9 c (90% the speed of light). it emits light, which moves away from the star
    12·1 answer
  • A 0.5-kg ball accelerated at 50 m/s2<br> .<br><br> What force was applied?
    7·1 answer
  • a proton is moving horizontally at 7.9 x 10^5 m/s. It passes through a vertical magnetic field that points downward. In which di
    7·1 answer
  • Which one of the following statements concerning spherical mirrors is correct?A. Only a convex mirror can produce an enlarged im
    14·1 answer
  • An object of mass 8.0 kg is attached to an ideal massless spring and allowed to hang in the Earth's gravitational field. The spr
    5·2 answers
  • A ball thrown straight up climbs for 3.0 sec before falling. Neglecting air resistance, with what velocity was the ball thrown?
    8·1 answer
  • Two oppositely charged but otherwise identical conducting plates of area 2.50 square centimeters are separated by a dielectric 1
    12·1 answer
  • Tech A says that tires are marked with a date code listing the date the tires should be discarded. Tech B says that any tires wi
    11·1 answer
  • During a game the same batter swings at a ball thrown by the pitcher and hits a line drive. Just before the ball is hit it is tr
    7·1 answer
  • A very tall building has a height H0 on a cool spring day when the temperature is T0. You decide to use the building as a sort o
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!