answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
andrew-mc [135]
2 years ago
9

A disc-shaped grindstone with mass 50 kg and diameter 0.52m rotates on frictionless bearings at 850 rev/min. An ax is pushed aga

inst the rim (to sharpen it) with a normal force of 160 N. The grindstone subsequently comes to rest in 7.5 seconds. What is the co-efficient of friction between ax and stone?
Physics
1 answer:
gladu [14]2 years ago
4 0

Answer:

0.48

Explanation:

m = mass of disc shaped grindstone = 50 kg

d = diameter of the grindstone = 0.52 m

r = radius of the grindstone = (0.5) d = (0.5) (0.52) = 0.26 m

w₀ = initial angular speed = 850 rev/min = 850 (0.10472) rad/s = 88.97 rad/s

t = time taken to stop = 7.5 sec

w = final angular speed  0 rad/s

Using the equation

w = w₀ + α t

0 = 88.97 + α (7.5)

α = - 11.86 rad/s²

F = normal force on the disc by the ax = 160 N

μ = Coefficient of friction

f = frictional force

frictional force is given as

f = μ F

f = 160 μ

Moment of inertia of grindstone is given as

I = (0.5) m r² = (0.5) (50) (0.26)² = 1.69 kgm²

Torque equation is given as

r f = I |α|

(0.26) (160 μ) = (1.69) (11.86)

μ = 0.48

You might be interested in
A Porsche 944 Turbo has a rated engine power of 217hp . 30% of the power is lost in the drive train, and 70% reaches the wheels.
scZoUnD [109]

Explanation:

(a)  It is given that two-third of weight is over the drive wheels. So, mathematically, w = \frac{2}{3}mg.

Hence, maximum force is expressed as follows.

                F_{max} = \mu_{s} \times w

           m \times a_{max} = \mu_{s} (\frac{2}{3} mg)

Hence, the maximum acceleration is calculated as follows.

             a_{max} = \frac{2}{3} \mu_{s} \times g

                          = \frac{2}{3} \times 1.00 \times 9.8 m/s^{2}

                          = 6.53 m/s^{2}

Hence, the maximum acceleration of the Porsche on a concrete surface where μs = 1 is 6.53 m/s^{2}.

(b)  Since, 30% of the power is lost in the drive train. So, the new power is 70% of P_{max}.

That is,   new power = 0.7 \times P_{max}

Now, the expression for power in terms of force and velocity is as follows.

                      P = F_{max} \nu

              0.7 P_{max} = ma_{max} \nu

Therefore, speed of the Porsche at maximum power output is as follows.

            \nu = 0.7 \times \frac{P_{max}}{ma_{max}}

                      = 0.7 \times \frac{217 hp \times \frac{746 W}{1 hp}}{1500 kg \times 6.53 m/s^{2}}

                      = 11.568 m/s

                      = 11.57 m/s

Therefore, speed of the Porsche at maximum power output is 11.57 m/s.

(c)   The time taken will be calculated as follows.

             time = \frac{\text{velocity}}{\text{acceleration}}

                     = \frac{11.57 m/s}{6.53 m/s^{2}}

                     = 1.77 s

Therefore, the Porsche takes 1.77 sec until it reaches the maximum power output.

6 0
2 years ago
The energy transfer diagram shows energy transfer in an MP3 player. Useful energy is transferred away from the MP3 player by lig
OLEGan [10]

Answer:

heat and sound.

Explanation:

Though some would argue that the heat is not useful. I guess it depends on if your hands are cold.

4 0
2 years ago
a 0.0215m diameter coin rolls up a 20 degree inclined plane. the coin starts with an initial angular speed of 55.2rad/s and roll
marissa [1.9K]

Answer:

h = 0.0362\,m

Explanation:

Given the absence of non-conservative force, the motion of the coin is modelled after the Principle of Energy Conservation solely.

U_{g,A} + K_{A} = U_{g,B} + K_{B}

U_{g,B} - U_{g,A} = K_{A} - K_{B}

m\cdot g \cdot h = \frac{1}{2}\cdot I \cdot \omega_{o}^{2}

The moment of inertia of the coin is:

I = \frac{1}{2}\cdot m \cdot r^{2}

After some algebraic handling, an expression for the maximum vertical height is derived:

m\cdot g \cdot h = \frac{1}{4}\cdot m \cdot r^{2}\cdot \omega_{o}^{2}

h = \frac{r^{2}\cdot \omega_{o}^{2}}{g}

h = \frac{(0.0108\,m)^{2}\cdot (55.2\,\frac{rad}{s} )^{2}}{9.807\,\frac{m}{s^{2}} }

h = 0.0362\,m

3 0
2 years ago
A Honda Civic travels in a straight line along a road. The car’s distance x from a stop sign is given as a function of time t by
aleksklad [387]

a) Average velocity: 2.8 m/s

b) Average velocity: 5.2 m/s

c) Average velocity: 7.6 m/s

Explanation:

a)

The position of the car as a function of time t is given by

x(t)=\alpha t^2 - \beta t^3

where

\alpha = 1.50 m/s^2

\beta = 0.05 m/s^3

The average velocity is given by the ratio between the displacement and the time taken:

v=\frac{\Delta x}{\Delta t}

The position at t = 0 is:

x(0)=\alpha \cdot 0^2 - \beta \cdot 0^3 = 0

The position at t = 2.00 s is:

x(2)=\alpha \cdot 2^2 - \beta \cdot 2^3=5.6 m

So the displacement is

\Delta x = x(2)-x(0)=5.6-0=5.6 m

The time interval is

\Delta t = 2.0 s - 0 s = 2.0 s

And so, the average velocity in this interval is

v=\frac{5.6 m}{2.0 s}=2.8 m/s

b)

The position at t = 0 is:

x(0)=\alpha \cdot 0^2 - \beta \cdot 0^3 = 0

While the position at t = 4.00 s is:

x(4)=\alpha \cdot 4^2 - \beta \cdot 4^3=20.8 m

So the displacement is

\Delta x = x(4)-x(0)=20.8-0=20.8 m

The time interval is

\Delta t = 4.0 - 0 = 4.0 s

So the average velocity here is

v=\frac{20.8}{4.0}=5.2 m/s

c)

The position at t = 2 s is:

x(2)=\alpha \cdot 2^2 - \beta \cdot 2^3=5.6 m

While the position at t = 4 s is:

x(4)=\alpha \cdot 4^2 - \beta \cdot 4^3=20.8 m

So the displacement is

\Delta x = 20.8 - 5.6 = 15.2 m

While the time interval is

\Delta t = 4.0 - 2.0 = 2.0 s

So the average velocity is

v=\frac{15.2}{2.0}=7.6 m/s

Learn more about average velocity:

brainly.com/question/8893949

brainly.com/question/5063905

#LearnwithBrainly

6 0
2 years ago
Cindy exerts a force of 40 newtons and moves a chair 6 meters. Her brother Andy pushes a different chair for 6 meters while exer
sesenic [268]
Work formula:
W = F * d
F 1 = 40 N, d 1 = 6 m;
F 2 = 30 N; d 2 = 6 m.
W ( Cindy ) = 40 * 6 = 240 Nm
W ( Andy ) = 30 * 6 = 180 Nm
The difference of their amounts if work:
240 Nm - 180  Nm = 60 nm

hope it helps!
3 0
2 years ago
Other questions:
  • a field hockey ball is launched from the ground at an angle to the horizontal. what are the ball's horizontal and vertical accel
    11·1 answer
  • An electron is in a vacuum near the surface of the Earth. Where should a second electron be placed so that the net force on the
    9·1 answer
  • Jason wanted to find the Volume of two rocks How could you use the tools below that is shown to find the volume of these irregul
    11·2 answers
  • The eiffel tower has a mass of 7.3 million kilograms and a height of 324 meters. its base is square with a side length of 125 me
    7·1 answer
  • A solid plate, with a thickness of 15 cm and a thermal conductivity of 80 W/m·K, is being cooled at the upper surface by air. Th
    5·1 answer
  • A lab technician uses laser light with a wavelength of 670 nm to test a diffraction grating. When the grating is 40.0 cm from th
    11·1 answer
  • A new technology company is marketing drones for residential use. The bar graph shows the relation between number of sales and t
    12·1 answer
  • It requires 49 J of work to stretch an ideal very light spring from a length of 1.4 m to a length of 2.9 m. What is the value of
    8·2 answers
  • The speed of sound in air is 320 ms-1 and in water it is 1600 ms-1. It takes 2.5 s for sound to reach a certain distance from th
    7·1 answer
  • Think about how geothermal energy is captured and used. Explain how geothermal energy shows the flow of thermal energy from hot
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!