Answer:
its 8 2/3
Step-by-step explanation: I got it right on edg
Answer:
The approximate probability that more than 360 of these people will be against increasing taxes is P(Z> <u>0.6-0.45)</u>
√0.45*0.55/600
The right answer is B.
Step-by-step explanation:
According to the given data we have the following:
sample size, h=600
probability against increase tax p=0.45
The probability that in a sample of 600 people, more that 360 people will be against increasing taxes.
We find that P(P>360/600)=P(P>0.6)
The sample proposition of p is approximately normally distributed mith mean p=0.45
standard deviation σ=√P(1-P)/n=√0.45(1-0.45)/600
If x≅N(u,σ∧∧-2), then z=(x-u)/σ≅N(0,1)
Now, P(P>0.6)=P(<u>P-P</u> > <u>0.6-0.45)</u>
σ √0.45*0.55/600
=P(Z> <u>0.6-0.45)</u>
√0.45*0.55/600
To start this, you would multiply 5/8 by 100 because you’re looking for a percentage.
5/8 x 100 = 62.5%
Answer:
A Type II error is when the null hypothesis is failed to be rejected even when the alternative hypothesis is true.
In this case, it would represent that the new program really increases the pass rate, but the sample taken is not enough statistical evidence to prove it. Then, the null hypothesis is not rejected.
The consequence is that the new method would be discarded (or changed) eventhough it is a real improvement.
Step-by-step explanation: