Answer:
Heat lost to the surroundings
Heat lost to the thermometer
Explanation:
All changes in heat, or energy, can be explained. Many of the reactions or changes we see in the world involve the conversion of energy. For example as we heat up a substance (eg. water), the amount of energy we put in should give us an exact temperature. However, this is a "perfect world" scenario, and does not occur in real life. Whenever heat is added to a substance like water, we always need to account for the energy that is going to be lost. For example, heat lost to evaporation or even the effect of measuring the temperature with a thermometer (the introduction of anything including a thermometer will affect the temperature).
Answer:
Water
Explanation:
Water is universal solvent it can disolves other things
Answer:
CO
Explanation:
From Graham's law, time taken to diffuse is directly proportional to the molecular mass of the gases. For two different gases.
t1/t2=√m1/m2
Since gas 1 diffuse 1.25 times as slowly as gas 2 and gas 1 is CO2 with m as 44g
1.25/1=√44/m2
Therefore m2=28g CO
Answer:
11482 ppt of Li
Explanation:
The lithium is extracted by precipitation with B(C₆H₄)₄. That means moles of Lithium = Moles B(C₆H₄)₄. Now, 1 mole of B(C₆H₄)₄ produce the liberation of 4 moles of EDTA. The reaction of EDTA with Mg²⁺ is 1:1. Thus, mass of lithium ion is:
<em>Moles Mg²⁺:</em>
0.02964L * (0.05581mol / L) = 0.00165 moles Mg²⁺ = moles EDTA
<em>Moles B(C₆H₄)₄ = Moles Lithium:</em>
0.00165 moles EDTA * (1mol B(C₆H₄)₄ / 4mol EDTA) = 4.1355x10⁻⁴ mol B(C₆H₄)₄ = Moles Lithium
That means mass of lithium is (Molar mass Li=6.941g/mol):
4.1355x10⁻⁴ moles Lithium * (6.941g/mol) = 0.00287g. In μg:
0.00287g * (1000000μg / g) = 2870μg of Li
As ppt is μg of solute / Liter of solution, ppt of the solution is:
2870μg of Li / 0.250L =
<h3>11482 ppt of Li</h3>
N₀ is the number of C-14 atoms per kg of carbon in the original sample at time = Os when its carbon was of the same kind as that present in the atmosphere today. After time ts, due to radioactive decay, the number of C-14 atoms per kg of carbon is the same sample which has decreased to N. λ is the radioactive decay constant.
Therefore N = N₀e-λt which is the radioactive decay equation,
N₀/N = eλt In (N₀.N= λt. This is the equation 1
The mass of carbon which is present in the sample os mc kg. So the sample has a radioactivity of A/mc decay is/kg. r is the mass of C-14 in original sample at t= 0 per total mass of carbon in a sample which is equal to [(total number of C-14 atoms in the sample at t m=m 0) × ma]/ total mass of carbon in the sample.
Now that the total number of C-14 atoms in the sample at t= 0/ total mass of carbon in sample = N₀ then r = N₀×ma
So N₀ = r/ma. this equation 2.
The activity of the radioactive substance is directly proportional to the number of atoms present at the time.
Activity = A number of decays/ sec = dN/dt = λ(number of atoms of C-14 present at time t) =
λ₁(N×mc). By rearranging we get N = A/(λmc) this is equation 3.
By plugging in equation 2 and 3 and solve t to get
t = 1/λ In (rλmc/m₀A).